It is shown that energy and momentum are conserved during the runaway motion of a radiating charge and during free fall of a charge in a gravitational field. The runaway motion demonstrates the consistency of classical electrodynamics and the Lorentz–Abraham–Dirac equation. The important role of the Schott (acceleration) energy in this connection is made clear, and it is shown that the Schott energy is the part of the electromagnetic field energy that is proportional to (minus) the scalar product of the velocity and acceleration of a moving accelerated charged particle. The Schott energy is negative if the acceleration is in the same direction as the velocity and positive if it is opposite. During runaway motion, the Schott energy becomes more and more negative, and for a charged particle, it is localized at the particle. It is also shown that a proton and a neutron fall with the same acceleration in a uniform gravitational field, although the proton radiates and the neutron does not. The radiation energy comes from the Schott energy.

1.
D. J.
Griffiths
,
T. C.
Proctor
, and
D. F.
Schroeter
, “
Abraham-Lorentz versus Landau-Lifshitz
,”
Am. J. Phys.
78
,
391
402
(
2010
).
2.
H. A.
Lorentz
,
The Theory of Electrons
(
Dover
,
New York
,
1952
), p.
49
. This monograph is based on lectures given by Lorentz at Columbia University in 1906.
3.
M.
Abraham
,
Theorie der Elektrizität: Elektromagnetische Theorie der Strahlung
(
B. G. Teubner
,
Leipzig
,
1905
).
4.
M.
Laue
, “
Die Wellenstrahlung einer bewegten Punktladung nach dem Relativitätsprinzip
,”
Ann. Phys.
333
,
436
442
(
1909
).
5.
P. A. M.
Dirac
, “
Classical theory of radiating electrons
,”
Proc. R. Soc. London, Ser. A
167
,
148
169
(
1938
).
6.
W. T.
Grandy
, Jr.
,
Relativistic Quantum Mechanics of Leptons and Fields
(
Kluwer Academic
,
Dordrecht
,
1991
), p.
367
.
7.
P.
Yi
, “
Quenched Hawking radiation and the black hole pair-creation rate
,” arXiv:gr-qc/9509031.
8.
E.
Eriksen
and
Ø.
Grøn
, “
Electrodynamics of hyperbolically accelerated charges. IV: Energy-momentum conservation of radiating charged particles
,”
Ann. Phys. (N.Y.)
297
,
243
294
(
2002
).
9.
F.
Rohrlich
, in
Lectures in Theoretical Physics
, edited by
W. E.
Brittin
and
B. W.
Downs
(
Interscience
,
New York
,
1960
), Vol.
II
, p.
240
.
10.
G. A.
Schott
, “
On the motion of the Lorentz electron
,”
Philos. Mag.
29
,
49
69
(
1915
).
11.
F.
Rohrlich
, “
The equations of motion of classical charges
,”
Ann. Phys. (N.Y.)
13
,
93
109
(
1961
).
12.
C.
Teitelboim
, “
Splitting of the Maxwell tensor: Radiation reaction without advanced fields
,”
Phys. Rev. D
1
,
1572
1582
(
1970
).
13.
P.
Pearle
, in
Electromagnetism: Paths to Research
, edited by
D.
Tepliz
(
Plenum
,
New York
,
1982
), pp.
211
295
.
14.
E. G. P.
Rowe
, “
Structure of the energy tensor in classical electrodynamics of point particles
,”
Phys. Rev. D
18
,
3639
3654
(
1978
).
15.
D. R.
Rowland
, “
Physical interpretation of the Schott energy of an accelerating point charge and the question of whether a uniformly accelerating charge accelerates
,”
Eur. J. Phys.
31
,
1037
1051
(
2010
).
16.
E.
Eriksen
and
Ø.
Grøn
, “
The significance of the Schott energy in the electrodynamics of charged particles and their fields
,”
Indian J. Phys., A
82
,
1113
1137
(
2008
).
17.
T. C.
Bradbury
, “
Radiation damping in classical electrodynamics
,”
Ann. Phys. (N.Y.)
19
,
323
347
(
1962
).
18.
E.
Eriksen
and
Ø.
Grøn
, “
Electrodynamics of hyperbolically accelerated charges. V: The field of a charge in the Rindler space and the Milne space
,”
Ann. Phys. (N.Y.)
313
,
147
196
(
2004
).
19.
B. S.
DeWitt
and
C. M.
DeWitt
, “
Falling charges
,”
Physica (Amsterdam)
1
,
3
20
(
1964
).
20.
D. G.
Boulware
, “
Radiation from a uniformly accelerated charge
,”
Ann. Phys.
124
,
169
188
(
1980
).
21.
M.
Kretzschmar
and
W.
Fugmann
, “
The electromagnetic field of an accelerated charge in the proper reference frame of a noninertial observer
,”
Nuovo Cimento Soc. Ital. Fis., B
103
,
389
412
(
1989
).
22.
W.
Fugmann
and
M.
Kretzschmar
, “
Classical electromagnetic radiation in noninertial reference frames
,”
Nuovo Cimento Soc. Ital. Fis., B
106
,
351
373
(
1991
).
23.
T.
Hirayama
, “
Classical radiation formula in the Rindler frame
,”
Prog. Theor. Phys.
108
,
679
688
(
2002
).
24.
A. O.
Barut
, “
Lorentz-Dirac equation and energy conservation for radiating electrons
,”
Phys. Lett. A
131
,
11
12
(
1988
).
25.
R. T.
Hammond
, “
Relativistic particle motion and radiation reaction in electrodynamics
,”
Electron. J. Theor. Phys.
7
,
221
258
(
2010
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.