We make a multipole expansion directly in Jefimenko’s equations to obtain the exact expressions for the electric and magnetic fields of an electric dipole with an arbitrary time dependence. Some comments are made about the usual derivations in most undergraduate and graduate textbooks and in literature.

1.
David J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1999
), Chap. 3.
2.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
), Chap. 9.
3.
Emil J.
Konopinsky
,
Electromagnetic Fields and Relativistic Particles
(
McGraw-Hill
,
New York
,
1981
), Chap. 8.
4.
William R.
Smythe
,
Static and Dynamic Electricity
(
McGraw-Hill
,
New York
,
1939
), Chap. 8.
5.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill
,
New York
,
1941
), Chap. 8.
6.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Reading, MA
,
1964
), Vol.
2
, Chap. 21.
7.
A.
Sommerfeld
,
Electrodynamics
(
Academic
,
New York
,
1952
), Vol.
3
, Sec. 19.
8.
Mark A.
Heald
and
Jerry B.
Marion
,
Classical Electromagnetic Radiation
, 3rd ed. (
Saunders College Publishing
,
New York
,
1995
), Chap. 9.
9.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
(
Addison-Wesley
,
Reading, MA
,
1962
), Chap. 9.
10.
Reference 1, Chap. 11.
11.
W. K. H.
Panofsky
and
M.
Phillips
,
Classical Electricity and Magnetism
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1962
), Chap. 14.
12.
John R.
Reitz
and
Frederick J.
Milford
,
Foundations of Electromagnetic Theory
(
Addson-Wesley
,
Reading, MA
,
1962
), Chap. 16.
13.
J. A.
Heras
, “
Radiation fields of a dipole in arbitrary motion
,”
Am. J. Phys.
62
,
1109
1115
(
1994
).
14.
Oleg D.
Jefimenko
, “
Solutions of Maxwell’s equations for electric and magnetic fields in arbitrary media
,”
Am. J. Phys.
60
,
899
902
(
1992
).
15.
Oleg D.
Jefimenko
,
Electricity and Magnetism
(
Appleton-Century-Crofts
,
New York
,
1966
), Chap. 15.
16.
J. A.
Heras
, “
Time-dependent generalizations of the Biot-Savart and Coulomb laws: A formal derivation
,”
Am. J. Phys.
63
,
928
932
(
1995
).
17.
D. J.
Griffiths
and
M. A.
Heald
, “
Time-dependent generalizations of the Biot-Savart and Coulomb law
,”
Am. J. Phys.
59
,
111
117
(
1991
).
18.
Tran-Cong
Ton
, “
On the time-dependent, generalized Coulomb and Biot-Savart laws
,”
Am. J. Phys.
59
,
520
528
(
1991
).
19.
U.
Bellotti
and
M.
Bornatici
, “
Time-dependent, generalized Coulomb and Biot-Savart laws: A derivation based on Fourier transforms
,”
Am. J. Phys.
64
,
568
570
(
1996
).
20.
Peter W.
Milonni
,
The Quantum Vacuum: An Introduction to Electrodynamics
(
Academic
,
San Diego
,
1994
).
21.
K. T.
McDonald
, “
The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips
,”
Am. J. Phys.
65
,
1074
1076
(
1997
).
22.
R.
de Melo e Souza
,
M. V.
Cougo-Pinto
,
C.
Farina
, and
M.
Moriconi
,
“Multipole radiation fields from the Jefimenko equation for the magnetic field and the Panosfsky-Phillips equation for the electric field
,”
Am. J. Phys.
77
,
67
72
(
2009
).
23.
J. A.
Heras
, “
Can Maxwell’s equations be obtained from the continuity equation?
,”
Am. J. Phys.
75
,
652
657
(
2007
).
24.
J. A.
Heras
, “
Jefimenko’s formulas with magnetic monopoles and the Lienard-Wiechert fields of a dual-charged particle
,”
Am. J. Phys.
62
,
525
531
(
1994
).
25.
F.
Rohrlich
, “
Causality, the Coulomb field, and Newton’s law of gravitation
,”
Am. J. Phys.
70
,
411
414
(
2002
).
26.
Oleg D.
Jefimenko
, “
Comment on ‘Causality, the Coulomb field, and Newton’s law of gravitation’
,”
Am. J. Phys.
70
,
964
964
(
2002
).
27.
F.
Rohrlich
, “
Reply to ‘Comment on “causality, the Coulomb field, and Newton’s law of gravitation’
,”
Am. J. Phys.
70
,
964
964
(
2002
).
28.
J. A.
Heras
, “
New approach to the classical radiation fields of moving dipoles
,”
Phys. Lett. A
237
,
343
348
(
1998
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.