An analysis based on the Galerkin method is given of some nonlinear oscillator equations that have been analyzed by several other methods, including harmonic balance and direct variational methods. The present analysis is shown to provide simple yet accurate approximate solutions of these nonlinear equations and illustrates the usefulness and the power of the Galerkin method.

1.
R. E.
Mickens
,
An Introduction to Nonlinear Oscillations
(
Cambridge U. P.
,
Cambridge
,
1981
).
2.
F. Y. M.
Wan
,
Introduction to the Calculus of Variations and Its Applications
(
Chapman and Hall
,
New York
,
1995
).
3.
B. A.
Finlayson
,
The Method of Weighted Residuals and Variational Principles
(
Academic
,
New York
,
1972
).
4.
L.
Komzsik
,
Applied Calculus of Variations for Engineers
(
CRC
,
Boca Raton, FL
,
2009
).
5.
F. M. S.
Lima
and
P.
Arun
, “
An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime
,”
Am. J. Phys.
74
,
892
895
(
2006
).
6.
W. P.
Ganley
, “
Simple pendulum approximation
,”
Am. J. Phys.
53
,
73
76
(
1985
).
7.
R. R.
Parwani
, “
An approximate expression for the large angle period of a simple pendulum
,”
Eur. J. Phys.
25
,
37
39
(
2004
).
8.
A.
Beléndez
,
A.
Hernandez
,
A.
Márquez
,
T.
Beléndez
, and
C.
Neipp
, “
Analytical approximations for the period of a nonlinear pendulum
,”
Eur. J. Phys.
27
,
539
551
(
2006
).
9.
A.
Beléndez
,
T.
Beléndez
,
C.
Neipp
, and
A.
Márquez
, “
Application of the homotopy perturbation method to the nonlinear pendulum
,”
Eur. J. Phys.
28
,
93
104
(
2007
).
10.
F. M. S.
Lima
, “
Simple ‘log formulae’ for pendulum motion valid for any amplitude
,”
Eur. J. Phys.
29
,
1091
1098
(
2008
).
11.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
,
New York
,
1980
).
12.
A.
Beléndez
,
E.
Gimeno
,
E.
Fernández
,
D. I.
Méndez
, and
M. L.
Alvarez
, “
Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable
,”
Phys. Scr.
77
,
065004
(
2008
).
13.
H. P. W.
Gottlieb
, “
Frequencies of oscillators with fractal-power non-linearities
,”
J. Sound Vib.
261
,
557
566
(
2003
).
14.
J. -H.
He
, “
Determination of limit cycles for strongly nonlinear oscillators
,”
Phys. Rev. Lett.
90
,
174301
-1–3 (
2003
).
15.
B. S.
Wu
and
C. W.
Lim
, “
Large amplitude non-linear oscillations of a general conservative system
,”
Int. J. Non-Linear Mech.
39
,
859
870
(
2004
).
16.
R.
Mickens
, “
Iteration method solutions for conservative and limit-cycle x1/3 force oscillators
,”
J. Sound Vib.
292
,
964
968
(
2006
).
17.
R.
Mickens
, “
Oscillations in an x4/3 potential
,”
J. Sound Vib.
246
,
375
378
(
2001
).
18.
R.
Mickens
, “
Harmonic balance and iteration calculations of periodic solutions to ÿ+y1=0
,”
J. Sound Vib.
306
,
968
972
(
2007
).
19.
J. -H.
He
, “
Variational approach for nonlinear oscillators
,”
Chaos, Solitons Fractals
34
,
1430
1439
(
2007
).
20.
J.
Crank
,
The Mathematics of Diffusion
(
Clarendon
,
Oxford
,
1975
).
21.
D.
Anderson
and
M.
Lisak
, “
Approximate solutions of some nonlinear diffusion equations
,”
Phys. Rev. A
22
,
2761
2768
(
1980
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.