Unruh radiation is the thermal flux measured by an accelerated observer moving through Minkowski spacetime. We study Unruh radiation as tunneling through a barrier. We use a WKB-like method to obtain the tunneling rate and the temperature of the Unruh radiation. The gravitational WKB method helps to highlight the subtle points that the tunneling rate should be written as the closed path integral of the canonical momentum, and for the case of the gravitational WKB problem, there is a timelike contribution to the tunneling rate arising from an imaginary change of the time coordinate upon crossing the horizon. This temporal contribution to the tunneling rate has no analog in the usual quantum mechanical WKB calculation. The derivation brings together many topics, including classical mechanics, relativity, relativistic field theory, quantum mechanics, statistical mechanics, and mathematical physics.

1.
S. W.
Hawking
, “
Particle creation by black holes
,”
Commun. Math. Phys.
43
,
199
220
(
1975
).
2.
G. W.
Gibbons
and
S. W.
Hawking
, “
Cosmological event horizons, thermodynamics, and particle creation
,”
Phys. Rev. D
15
,
2738
2751
(
1977
).
3.
W. G.
Unruh
, “
Notes on black hole evaporation
,”
Phys. Rev. D
14
,
870
892
(
1976
).
4.
P.
Kraus
and
F.
Wilczek
, “
Effect of self-interaction on charged black hole radiance
,”
Nucl. Phys. B
437
,
231
242
(
1995
);
E.
Keski-Vakkuri
and
P.
Kraus
, “
Microcanonical D-branes and back reaction
,”
Nucl. Phys. B
491
,
249
262
(
1997
).
5.
K.
Srinivasan
and
T.
Padmanabhan
, “
Particle production and complex path analysis
,”
Phys. Rev. D
60
,
024007
1
(
1999
);
S.
Shankaranarayanan
,
T.
Padmanabhan
, and
K.
Srinivasan
, “
Hawking radiation in different coordinate settings: Complex paths approach
,”
Class. Quantum Grav.
19
,
2671
2687
(
2002
).
6.
M. K.
Parikh
and
F.
Wilczek
, “
Hawking radiation as tunneling
,”
Phys. Rev. Lett.
85
,
5042
5045
(
2000
).
7.
M. K.
Parikh
, “
A secret tunnel through the horizon
,”
Int. J. Mod. Phys. D
13
,
2351
2354
(
2004
).
8.
Y.
Sekiwa
, “
Decay of the cosmological constant by Hawking radiation as quantum tunneling
,” arXiv:0802.3266.
9.
G. E.
Volovik
, “
On de Sitter radiation via quantum tunneling
,”
JETP Lett.
90
,
1
4
(
2009
).
10.
A. J. M.
Medved
, “
A brief editorial on de Sitter radiation via tunneling
,” arXiv:0802.3796.
11.
V.
Akhmedova
,
T.
Pilling
,
A.
de Gill
, and
D.
Singleton
, “
Temporal contribution to gravitational WKB-like calculations
,”
Phys. Lett. B
666
,
269
271
(
2008
).
12.
Qing-Quan
Jiang
,
Shuang-Qing
Wu
, and
Xu
Cai
, “
Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes
,”
Phys. Rev. D
73
,
064003
1
(
2006
).
13.
Jingyi
Zhang
and
Zheng
Zhao
, “
Charged particles tunneling from the Kerr–Newman black hole
,”
Phys. Lett. B
638
,
110
113
(
2006
).
14.
G. E.
Volovik
,
Exotic Properties of Superfluids 3He
(
World Scientific
,
Singapore
,
1992
).
15.
S. P.
Kim
, “
Hawking radiation as quantum tunneling in Rindler coordinate
,”
JHEP
11
,
048
1
(
2007
).
16.
V.
Akhmedova
,
T.
Pilling
,
A.
de Gill
, and
D.
Singleton
, “
Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation
,”
Phys. Lett. B
673
,
227
231
(
2009
).
17.
R.
Kerner
and
R. B.
Mann
, “
Fermions tunneling from black holes
,”
Class. Quantum Grav.
25
,
095014
1
(
2008
).
18.
A. J. M.
Medved
and
E. C.
Vagenas
, “
On Hawking radiation as tunneling with back-reaction
,”
Mod. Phys. Lett. A
20
,
2449
2454
(
2005
);
A. J. M.
Medved
and
E. C.
Vagenas
, “
On Hawking radiation as tunneling with logarithmic corrections
,”
Mod. Phys. Lett. A
20
,
1723
1728
(
2005
).
19.
J. F.
Donoghue
and
B. R.
Holstein
, “
Temperature measured by a uniformly accelerated observer
,”
Am. J. Phys.
52
,
730
734
(
1984
).
20.
J. D.
Jackson
, “
On understanding spin-flip synchrotron radiation and the transverse polarization of electrons in storage rings
,”
Rev. Mod. Phys.
48
,
417
433
(
1976
).
21.
J. S.
Bell
and
J. M.
Leinaas
, “
Electrons as accelerated thermometers
,”
Nucl. Phys. B
212
,
131
150
(
1983
);
J. S.
Bell
and
J. M.
Leinaas
, “
The Unruh effect and quantum fluctuations of electrons in storage rings
,”
Nucl. Phys. B
284
,
488
508
(
1987
).
22.
E. T.
Akhmedov
and
D.
Singleton
, “
On the relation between Unruh and Sokolov–Ternov effects
,”
Int. J. Mod. Phys. A
22
,
4797
4823
(
2007
);
E. T.
Akhmedov
and
D.
Singleton
, “
On the physical meaning of the Unruh effect
,”
JETP Lett.
86
,
615
619
(
2008
).
23.
A.
Retzker
,
J. I.
Cirac
,
M. B.
Plenio
, and
B.
Reznik
, “
Methods for detecting acceleration radiation in a Bose–Einstein condensate
,”
Phys. Rev. Lett.
101
,
110402
1
(
2008
).
24.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
San Francisco
,
1973
).
25.
P. M.
Alsing
and
P. W.
Milonni
, “
Simplified derivation of the Hawking–Unruh temperature for an accelerated observer in vacuum
,”
Am. J. Phys.
72
,
1524
1529
(
2004
).
26.
E. F.
Taylor
and
J. A.
Wheeler
,
Spacetime Physics
, 2nd ed. (
Freeman
,
San Francisco
,
1992
).
27.
N. D.
Birrell
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge U. P.
,
New York
,
1982
).
28.
M.
Visser
,
Lorentzian Wormholes: From Einstein to Hawking
(
AIP
,
New York
,
1995
).
29.
L. P.
Grishchuk
,
Y. B.
Zeldovich
, and
L. V.
Rozhansky
, “
Equivalence principle and zero point field fluctuations
,”
Sov. Phys. JETP
65
,
11
14
(
1987
).
30.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
, 3rd ed. (
Pergamon
,
New York
,
1977
).
31.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Pearson-Prentice-Hall
,
Upper Saddle River, NJ
,
2005
).
32.
J.
Schwinger
, “
On gauge invariance and vacuum polarization
,”
Phys. Rev.
82
,
664
679
(
1951
).
33.
The Schwinger rate is found by taking the trace-log of the operator (gm2c2/2), where g is the d’Alembertian in the background metric gμν, that is, the first term in Eq. (A1). As a side comment, the Schwinger rate was initially calculated for the case of a uniform electric field. In this case, the Schwinger rate corresponded to the probability of creating particle-antiparticle pairs from the vacuum field at the expense of the electric field’s energy. This electric field must have a critical strength for the Schwinger effect to occur. A good discussion of the calculation of the Schwinger rate for the usual case of a uniform electric field and the connection of the Schwinger effect to Unruh and Hawking radiation can be found in Ref. 34.
34.
B. R.
Holstein
, “
Strong field pair production
,”
Am. J. Phys.
67
,
499
507
(
1999
).
35.
B. D.
Chowdhury
, “
Problems with tunneling of thin shells from black holes
,”
Pramana
70
,
3
26
(
2008
).
36.
E. T.
Akhmedov
,
V.
Akhmedova
, and
D.
Singleton
, “
Hawking temperature in the tunneling picture
,”
Phys. Lett. B
642
,
124
128
(
2006
).
37.
E. T.
Akhmedov
,
V.
Akhmedova
,
T.
Pilling
, and
D.
Singleton
, “
Thermal radiation of various gravitational backgrounds
,”
Int. J. Mod. Phys. A
22
,
1705
1715
(
2007
).
38.
R.
Banerjee
and
B. R.
Majhi
, “
Hawking black body spectrum from tunneling mechanism
,”
Phys. Lett. B
675
,
243
245
(
2009
).
39.
E. T.
Akhmedov
,
T.
Pilling
, and
D.
Singleton
, “
Subtleties in the quasi-classical calculation of Hawking radiation
,”
Int. J. Mod. Phys. D
17
,
2453
2458
(
2008
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.