The behavior of a one-dimensional mass-rubber band oscillator is investigated experimentally. The data show clear evidence for viscoelastic behavior and can be interpreted in terms of a simple oscillator model consisting of a mass connected to a four parameter viscoelastic element. The model displays the observed crossover in the dynamic response. The success and limitations of the model and the pedagogical relevance of the experiment are discussed.

1.
L. P.
Fulcher
and
B. F.
Davis
, “
Theoretical and experimental study of the motion of the simple pendulum
,”
Am. J. Phys.
44
,
51
55
(
1976
).
2.
S. D.
Schery
, “
Design of an inexpensive pendulum for study of large-angle motion
,”
Am. J. Phys.
44
,
666
670
(
1976
).
3.
T.
Lewowski
and
K.
Woźniak
, “
The period of a pendulum at large amplitudes: A laboratory experiment
,”
Eur. J. Phys.
23
,
461
464
(
2002
).
4.
F. M. S.
Lima
and
P.
Arun
, “
An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime
,”
Am. J. Phys.
74
,
892
895
(
2006
).
5.
I. R.
Lapidus
, “
Motion of a harmonic oscillator with sliding friction
,”
Am. J. Phys.
38
,
1360
1361
(
1970
).
6.
R. C.
Hudson
and
C. R.
Finfgeld
, “
Laplace transform solution for the oscillator damped by dry friction
,”
Am. J. Phys.
39
,
568
570
(
1971
).
7.
A.
Marchewka
,
D. S.
Abbott
, and
R. J.
Beichner
, “
Oscillator damped by a constant-magnitude friction force
,”
Am. J. Phys.
72
,
477
483
(
2004
).
8.
A.
Ricchiuto
and
A.
Tozzi
, “
Motion of a harmonic oscillator with sliding and viscous friction
,”
Am. J. Phys.
50
,
176
179
(
1982
).
9.
P. T.
Squire
, “
Pendulum damping
,”
Am. J. Phys.
54
,
984
991
(
1986
).
10.
A.
Yariv
,
J.
Scheuer
,
B.
Crosignani
, and
P.
Di Porto
, “
The case of the oscillating party balloon: A simple toy experiment requiring a not-so-simple interpretation
,”
Am. J. Phys.
75
,
696
700
(
2007
).
11.
L. R. G.
Treloar
, “
The elasticity and related properties of rubbers
,”
Rep. Prog. Phys.
36
,
755
826
(
1973
).
12.
L. R. G.
Treloar
,
The Physics of Rubber Elasticity
, 3rd ed. (
Clarendon
,
Oxford
,
1975
).
13.
F. J.
Lockett
,
Nonlinear Viscoelastic Solids
(
Academic
,
New York
,
1972
).
14.
J.
Ferry
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1980
).
15.
R. M.
Christensen
,
Theory of Viscoelasticity
(
Academic
,
New York
,
1982
).
16.
Y.
Ketema
, “
Approximate model for a viscoelastic oscillator
,”
J. Appl. Mech.
70
,
757
761
(
2003
).
17.
P.
Muller
, “
Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not?
,”
J. Sound Vib.
285
,
501
509
(
2005
).
18.
H. M.
James
and
E.
Guth
, “
Statistical thermodynamics of rubber elasticity
,”
J. Chem. Phys.
21
,
1039
1049
(
1953
).
19.
T.
Waugh
, “
The Linux 2.4 parallel port subsystem
,” ⟨kernelbook.sourceforge.net/parportbook.pdf⟩.
20.
A.
Rubini
and
J.
Corbet
,
Linux Device Drivers
, 2nd ed. (
O’Reilly & Associates
,
Sebastopol
,
2001
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.