The treatment of the time-independent Schrödinger equation in real space is an indispensable part of introductory quantum mechanics. In contrast, the Schrödinger equation in momentum space is an integral equation that is not readily amenable to an analytical solution and is rarely taught. We present a numerical approach to the Schrödinger equation in momentum space. After a suitable discretization process, we obtain the Hamiltonian matrix and diagonalize it numerically. By considering a few examples, we show that this approach is ideal for exploring bound states in a localized potential and complements the traditional (analytical or numerical) treatment of the Schrödinger equation in real space.

1.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
2004
).
2.
E.
Merzbacher
,
Quantum Mechanics
(
Wiley
,
Hoboken, NJ
,
1998
).
3.
E.
Kreyszig
,
Advanced Engineering Mathematics
(
Wiley
,
Hoboken, NJ
,
2006
), pp.
188
193
.
4.
P.
Dennery
and
A.
Krzywicki
,
Mathematics for Physicists
(
Dover
,
Mineola, NY
,
1995
).
5.
P. C.
Chow
, “
Computer solutions to the Schrödinger equation
,”
Am. J. Phys.
40
,
730
734
(
1972
).
6.
R. H.
Landau
,
M.
José Páez
, and
C. C.
Bordeianu
,
A Survey of Computational Physics
(
Princeton U. P.
,
Princeton, NJ
,
2008
).
7.
E. C.
Titchmarsh
, “
Some eigenfunction expansion formulae
,”
Proc. London Math. Soc.
3
(
11
),
159
168
(
1961
), and references therein;
C. E.
Dean
and
S. A.
Fulling
, “
Continuum eigenfunction expansions and resonances: A simple model
,”
Am. J. Phys.
50
,
540
544
(
1982
).
8.
References 3 and 4, Chap. 4.
9.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
(
Oxford U. P.
,
New York
,
1996
).
10.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley
,
Reading, MA
,
1995
).
11.
A.
Goldberg
,
H. M.
Schey
, and
J. L.
Schwartz
, “
One-dimensional scattering in configuration space and momentum space
,”
Am. J. Phys.
36
,
454
455
(
1968
);
S. K.
Adhikari
, “
Quantum scattering in two-dimensions
,”
Am. J. Phys.
54
,
362
367
(
1986
).
12.
M.
Lieber
, “
Quantum mechanics in momentum space: An illustration
,”
Am. J. Phys.
43
,
486
491
(
1975
).
13.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics (Non-Relativistic Theory)
(
Butterworth-Heinemann
,
Burlington, MA
,
2005
), Sec. 45.
14.
J.
Fernando Perez
and
F. A. B.
Coutinho
, “
Schrödinger equation in two dimensions for a zero-range potential and a uniform magnetic field: An exactly solvable model
,”
Am. J. Phys.
59
,
52
54
(
1991
).
15.
S.
Nyeo
, “
Regularization methods for delta-function potential in two-dimensional quantum mechanics
,”
Am. J. Phys.
68
,
571
575
(
2000
).
16.
J. W.
Huang
and
A.
Kozycki
, “
Hydrogen atom in two dimensions
,”
Am. J. Phys.
47
,
1005
1006
(
1979
);
X. L.
Yang
,
M.
Lieber
, and
F. T.
Chan
, “
The Runge-Lenz vector for the two-dimensional hydrogen atom
,”
Am. J. Phys.
59
,
231
232
(
1991
);
C. R.
Jamell
,
C. -H.
Zhang
, and
Y. N.
Joglekar
, e-print arXiv:0910.2993.
17.
L. E.
Blumenson
, “
A derivation ofn-dimensional spherical coordinates
,”
Am. Math. Monthly
67
,
63
66
(
1960
);
E.
Demiralp
, “
Bound states of n-dimensional harmonic oscillator decorated with Dirac delta functions
,”
J. Phys. A
38
,
4783
4793
(
2005
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.