Both wire-wound solenoids and cylindrical magnets can be approximated as ideal azimuthally symmetric solenoids. We present an exact solution for the magnetic field of an ideal solenoid in an easy to use form. The field is expressed in terms of a single function that can be rapidly computed by means of a compact efficient algorithm, which can be coded as an add-in function to a spreadsheet, making field calculations accessible to introductory students. These expressions are not only accurate but are also as fast as most approximate expressions. We demonstrate their utility by simulating the dropping of a cylindrical magnet through a nonmagnetic conducting tube and comparing the calculation with data obtained from experiments suitable for an undergraduate laboratory.

1.
John T.
Conway
, “
Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions
,”
IEEE Trans. Magn.
37
(
4
),
2977
2988
(
2001
).
2.
Velimir
Labinac
,
Natasa
Erceg
, and
Dubravka
Kotnik-Karuza
, “
Magnetic field of a cylindrical coil
,”
Am. J. Phys.
74
(
7
),
621
627
(
2006
).
3.
Milan Wayne
Garrett
, “
Axially symmetric systems for generating and measuring magnetic fields. Part I
,”
J. Appl. Phys.
22
(
9
),
1091
1107
(
1951
).
4.
Edmund E.
Callaghan
and
Stephen H.
Maslen
, “
The magnetic field of a finite solenoid
,” NASA TN D-465 (
1960
), <ntrs.nasa.gov>.
5.
Andreas
Sundquist
, “
Dynamic line integral convolution for visualizing streamline evolution
,”
IEEE Trans. Vis. Comput. Graph.
9
(
3
),
273
282
(
2003
); available at <web.mit.edu/viz/soft/>.
6.
For source code see <web.mit.edu/viz/soft/>.
7.
E. B.
Rosa
and
F. W.
Grover
, “
Formulas and tables for the calculation of mutual and self induction
,”
Bur. Stand. (U.S.), Bull.
8
(
1
),
53
77
(
1911
), <www.g3ynh.info/zdocs/refs/Rosa-Grover1911/Contents.html>.
8.
G. R.
Olshausen
, “
Absolute formulae for the mutual inductance of coaxial solenoids
,”
Phys. Rev. (Series I)
35
(
2
),
148
152
(
1912
).
9.
Milan Wayne
Garrett
, “
Calculations of fields, forces and mutual inductances of current systems by elliptic integrals
,”
J. Appl. Phys.
34
,
2567
2573
(
1963
).
10.
K. D.
Hahn
,
E. M.
Johnson
,
A.
Brokken
, and
S.
Baldwin
, “
Eddy current damping of a magnet moving through a pipe
,”
Am. J. Phys.
66
(
12
),
1066
1076
(
1998
).
11.
D.
Amrani
and
P.
Paradis
, “
Faraday’s law of induction gets free-falling magnet treatment
,”
Phys. Educ.
40
(
4
),
313
314
(
2005
).
12.
Yan
Levin
,
Fernando L.
da Silveira
, and
Felipe B.
Rizzato
, “
Electromagnetic braking: A simple quantitative model
,”
Am. J. Phys.
74
(
9
),
815
817
(
2006
).
13.
Jhules A. M.
Clack
and
Terrence P.
Toepker
, “
Magnetic induction experiment
,”
Phys. Teach.
28
(
4
),
236
238
(
1990
).
16.
J. A.
Pelesko
,
M.
Cesky
, and
S.
Huertas
, “
Lenz’s law and dimensional analysis
,”
Am. J. Phys.
73
(
1
),
37
39
(
2005
).
17.
M. K.
Roy
,
Manoj K.
Harbola
, and
H. C.
Verma
, “
Demonstration of Lenz’s law: Analysis of a magnet falling through a conducting tube
,”
Am. J. Phys.
75
(
8
),
728
730
(
2007
).
18.
B. A.
Knyazev
,
I. A.
Kotel’nikov
,
A. A.
Tyutin
, and
V. S.
Cherkasskii
, “
Braking of a magnetic dipole moving with an arbitrary velocity through a conducting pipe
,”
Phys. Usp.
49
,
937
946
(
2006
).
19.
J.
Iñiguez
,
V.
Raposo
,
A.
Hernández-López
,
A. G.
Flores
, and
M.
Zazo
, “
Study of the conductivity of a metallic tube by analysing the damped fall of a magnet
,”
Eur. J. Phys.
25
,
593
604
(
2004
).
20.
C. S.
MacLatchy
,
P.
Backman
, and
L.
Bogan
, “
A quantitative magnetic braking experiment
,”
Am. J. Phys.
61
(
12
),
1096
1101
(
1993
).
21.
M.
Hossein Partovi
and
Eliza J.
Morris
, “
Eddy current damping of a magnet moving through a pipe
,”
Can. J. Phys.
84
,
253
274
(
2006
).
22.
Roland
Bulirsch
, “
Numerical calculation of elliptic integrals and elliptic functions
,”
Numer. Math.
7
,
78
90
(
1965
).
23.
W.
Bartky
, “
Numerical calculation of a generalized elliptic integral
,”
Rev. Mod. Phys.
10
,
264
269
(
1938
).
24.
The open source OpenOffice software suite is available at <www.openoffice.org>.
25.
FORTRAN code for evaluating the C function in Eq. (1) is available at <docdb.fnal.gov/ILC/sid/stanitz/ilcsoft-latest/cernlib-2006/src/mathlib/gen/c/religc64.F>.
26.
William H.
Press
,
Brian
Flannery
,
Saul A.
Teukolsky
, and
William T.
Vetterling
,
Numerical Recipes in C
(
Cambridge U. P.
,
New York
,
1988
).
27.
William H.
Press
,
Brian
Flannery
,
Saul A.
Teukolsky
, and
William T.
Vetterling
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge U. P.
,
New York
,
2007
).
28.
K. -D.
Reinsch
and
W.
Raab
, “
Elliptic integrals of the first and second kind: Comparison of Bulirsch’s and Carlson’s algorithms for numerical calculation
,” in
Special Functions, Proceedings of the International Workshop
, edited by
Charles
Dunkl
,
Mourad
Ismail
, and
Roderick
Wong
(
World Scientific
,
Singapore
,
1999
), pp.
293
308
, <www-m2.ma.tum.de/homepages/kladire/publications/bucavgl/bucavgl.html>.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.