The problem of rectilinear motion of a body on an inclined plane is well known, but attempts to generalize this problem to two dimensions lead to difficulties, in particular, finding the trajectory of a body under the influence of two forces. We offer a general method for solving this problem. The method introduces a new auxiliary independent variable instead of time and a variable oblique-angle basis replaces a rectangular one. An analogy is shown between curvilinear motion on an inclined plane and the pursuit problem.

1.
G.
Myakishev
, “
Zadachnik Kvanta. Fizika (Problems in Kvant)
,”
Kvant
2
,
25
25
(
1971
).
2.
B.
Bukhovtsev
, “
Reshenia zadachnika Kvanta. Fizika (Solutions of Problems in Kvant)
,”
Kvant
11
,
32
34
(
1971
).
3.
P.
Gnadig
,
G.
Honiyek
, and
K. F.
Riley
,
200 Puzzling Physics Problems
(
Cambridge U. P.
,
Cambridge
,
2001
), pp.
19
20
.
4.
I.
Vorobyev
,
P.
Zubkov
,
G.
Kutuzova
,
O.
Savchenko
,
A.
Trubachev
, and
G.
Haritonov
,
Physics Problems
, 4th ed. (
Publishing House “LAN”
,
Novosibirsk
,
2001
) (in Russian).
5.
A.
González
, “
Introduction of numerical methods in mechanics laboratory course in a curriculum change
,”
GIREP 2008, International Conference, Physics Curriculum Design, Development and Validation
, University of Cyprus,
2008
, pp.
18
22
www2.ucy.ac.cy/girep2008/⟩.
6.
P.
Bouguer
, “
Lignes de poursuite
,”
Memoires de l’Academie Royale des Sciences
1732
,
1
14
.
7.
R.
Isaacs
,
Differential Games
(
Wiley
,
New York
,
1965
).
8.
Plato
,
The Dialogues of Plato: Plato’s Parmenides
(
Yale U. P.
,
New Haven
,
1998
).
9.
A.
Guha
and
S.
Biswas
, “
On Leonardo da Vinci’s cat and mouse problem
,”
Bull. Inst. Math. Appl.
30
(
1–2
),
12
15
(
1994
).
10.
G.
Boole
,
Treatise on Differential Equations
(
Macmillan
,
London
,
1850
).
11.
A.
Bernhart
, “
Curves of pursuit
,”
Scripta Math.
20
,
125
141
(
1954
).
12.
A.
Bernhart
, “
Curves of pursuit II
,”
Scripta Math.
23
,
49
65
(
1957
).
13.
A.
Bernhart
, “
Polygons of pursuit
,”
Scripta Math.
24
,
23
50
(
1959
).
14.
J. C.
Barton
and
C. J.
Eliezer
, “
On pursuit curves
,”
J. Aust. Math. Soc. Ser. B, Appl. Math.
41
,
358
371
(
2000
).
15.
M.
Herver
, “
Pro lisu i sobaku, Kvant (About a fox and a dog)
,”
Kvant
2
,
39
44
(
1973
).
16.
S.
Asheulov
and
V.
Barishev
, “
Pogonya, stolknovenie, poimka (Pursuit, collision, capture)
,”
Kvant
1
,
20
25
(
1979
).
17.
C. E.
Mungan
, “
A classic chase problem solved from a physics perspective
,”
Eur. J. Phys.
26
,
985
990
(
2005
).
18.
J.
Gao
,
W. D.
Luedtke
,
D.
Gourdon
,
M.
Ruths
,
J. N.
Israelachvili
, and
U.
Landman
, “
Frictional forces and Amontons’ law: From the molecular to the macroscopic scale
,”
J. Phys. Chem. B
108
,
3410
3425
(
2004
).
19.
C.
Canudas-de-Wit
,
H.
Olsson
,
K. J.
Åström
, and
P.
Lischinsky
, “
Dynamic friction models and control design
,”
Proceedings of the 1993 American Control Conference
, San Francisco, CA,
1993
, Vol.
2
, pp.
1920
1926
.
20.
R.
Feynman
,
R.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Reading, MA
,
1963
), Vol.
1
, pp.
15
52
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.