The problem of rectilinear motion of a body on an inclined plane is well known, but attempts to generalize this problem to two dimensions lead to difficulties, in particular, finding the trajectory of a body under the influence of two forces. We offer a general method for solving this problem. The method introduces a new auxiliary independent variable instead of time and a variable oblique-angle basis replaces a rectangular one. An analogy is shown between curvilinear motion on an inclined plane and the pursuit problem.
REFERENCES
1.
2.
B.
Bukhovtsev
, “Reshenia zadachnika Kvanta. Fizika (Solutions of Problems in Kvant)
,” Kvant
11
, 32
–34
(1971
).3.
P.
Gnadig
, G.
Honiyek
, and K. F.
Riley
, 200 Puzzling Physics Problems
(Cambridge U. P.
, Cambridge
, 2001
), pp. 19
–20
.4.
I.
Vorobyev
, P.
Zubkov
, G.
Kutuzova
, O.
Savchenko
, A.
Trubachev
, and G.
Haritonov
, Physics Problems
, 4th ed. (Publishing House “LAN”
, Novosibirsk
, 2001
) (in Russian).5.
A.
González
, “Introduction of numerical methods in mechanics laboratory course in a curriculum change
,” GIREP 2008, International Conference, Physics Curriculum Design, Development and Validation
, University of Cyprus, 2008
, pp. 18
–22
⟨www2.ucy.ac.cy/girep2008/⟩.6.
P.
Bouguer
, “Lignes de poursuite
,” Memoires de l’Academie Royale des Sciences
1732
, 1
–14
.7.
8.
9.
A.
Guha
and S.
Biswas
, “On Leonardo da Vinci’s cat and mouse problem
,” Bull. Inst. Math. Appl.
30
(1–2
), 12
–15
(1994
).10.
11.
12.
13.
14.
J. C.
Barton
and C. J.
Eliezer
, “On pursuit curves
,” J. Aust. Math. Soc. Ser. B, Appl. Math.
41
, 358
–371
(2000
).15.
16.
S.
Asheulov
and V.
Barishev
, “Pogonya, stolknovenie, poimka (Pursuit, collision, capture)
,” Kvant
1
, 20
–25
(1979
).17.
C. E.
Mungan
, “A classic chase problem solved from a physics perspective
,” Eur. J. Phys.
26
, 985
–990
(2005
).18.
J.
Gao
, W. D.
Luedtke
, D.
Gourdon
, M.
Ruths
, J. N.
Israelachvili
, and U.
Landman
, “Frictional forces and Amontons’ law: From the molecular to the macroscopic scale
,” J. Phys. Chem. B
108
, 3410
–3425
(2004
).19.
C.
Canudas-de-Wit
, H.
Olsson
, K. J.
Åström
, and P.
Lischinsky
, “Dynamic friction models and control design
,” Proceedings of the 1993 American Control Conference
, San Francisco, CA, 1993
, Vol. 2
, pp. 1920
–1926
.20.
R.
Feynman
, R.
Leighton
, and M.
Sands
, The Feynman Lectures on Physics
(Addison-Wesley
, Reading, MA
, 1963
), Vol. 1
, pp. 15
–52
.© 2010 American Association of Physics Teachers.
2010
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.