Quantum mechanical tunneling across smooth double barrier potentials is modeled using Gaussian functions and is analyzed numerically and by using the WKB approximation. The transmission probability, resonances as a function of incident particle energy, and their dependence on the barrier parameters are obtained for various cases. We also discuss the tunneling time, for which we obtain generalizations of the known results for rectangular barriers.

1.
A.
Beiser
,
Concepts of Modern Physics
(
McGraw-Hill International
,
Singapore
,
1984
), see Chap. 5 for a discussion on the tunneling effect and Chap. 12 for its application to α-decay.
2.
E.
Merzbacher
,
Quantum Mechanics
(
Wiley
,
New York
,
1986
).
3.
C.
Cohen-Tannoudji
,
B.
Liu
, and
F.
Laloe
,
Quantum Mechanics
(
Wiley
,
New York
,
1977
), Vol.
1
.
4.
V. V.
Mitin
,
V. A.
Kochelap
, and
M. A.
Stoscio
,
Quantum Heterostructures: Microelectronics and Optoelectronics
(
Cambridge U. P.
,
Cambridge
,
1999
), pp.
73
87
.
5.
Z. I.
Alferov
, “
The double heterostructure concept and its applications to physics, electronics and technology
,”
Rev. Mod. Phys.
73
(
3
),
767
782
(
2001
).
6.
P.
Descouvemont
,
D.
Baye
, and
P. -H.
Heenen
, “
A barrier penetration model for heavy ion fusion valid at all energies
,”
Z. Phys. A
306
,
79
88
(
1982
).
7.
L.
Randall
and
R.
Sundrum
, “
An alternative to compactification
,”
Phys. Rev. Lett.
83
,
4690
4693
(
1999
);
L.
Randall
and
R.
Sundrum
, “
A large mass hierarchy from a small extra dimension
,”
Phys. Rev. Lett.
83
,
3370
3373
(
1999
).
8.
K.
Rapedius
and
H. J.
Korsch
, “
Barrier transmission for the one-dimensional nonlinear Schrödinger equation: Resonances and transmission profiles
,”
Phys. Rev. A
77
,
063610
1
(
2008
).
9.
H. A.
Ishkhanyan
and
V. P.
Krainov
, “
Above barrier reflection of cold atoms by resonant laser light within the Gross-Pitaevskii approximation
,”
Laser Phys.
19
,
1729
1734
(
2009
);
H. A.
Ishkhanyan
and
V. P.
Krainov
, ““
Multiple-scale analysis for resonance reflection by a one-dimensional rectangular barrier in the Gross-Pitaevskii problem
,”
Phys. Rev. A
80
,
045601
1
(
2009
);
H. A.
Ishkhanyan
,
V. P.
Krainov
, and
A. M.
Ishkhanyan
, “
Transmission resonances in above-barrier reflection of ultra-cold atoms by the Rosen-Morse potential
,”
J. Phys. B
43
,
085306
1
(
2010
).
10.
T.
Paul
,
K.
Richter
, and
P.
Schlagheck
, “
Nonlinear resonant transport of Bose-Einstein condensates
,”
Phys. Rev. Lett.
94
,
020404
1
(
2005
).
11.
B.
Méndez
and
F.
Domínguez-Adame
, “
Numerical study of electron tunneling through heterostructures
,”
Am. J. Phys.
62
,
143
147
(
1994
).
12.
A. P.
Stamp
and
G. C.
McIntosh
, “
A time-dependent study of resonant tunneling through a double barrier
,”
Am. J. Phys.
64
,
264
276
(
1996
).
13.
A.
Uma Maheswari
,
P.
Prema
,
S.
Mahadevan
, and
C. S.
Shastry
, “
Quasi-bound states, resonance tunnelling, and tunnelling times generated by twin symmetric barriers
,”
Pramana, J. Phys.
73
(
6
),
969
988
(
2009
).
14.
H.
Yamamoto
, “
Resonant tunneling condition and transmission coefficient in a symmetrical one-dimensional rectangular double-barrier system
,”
Appl. Phys. A: Mater. Sci. Process.
42
,
245
248
(
1987
).
15.
B.
Ricco
and
M. Ya.
Azbel
, “
Physics of resonant tunneling: The one-dimensional double barrier case
,”
Phys. Rev. B
29
,
1970
1981
(
1984
).
16.
J. L.
Powell
and
B.
Crasemann
,
Quantum Mechanics
(
Addison-Wesley
,
Reading, MA
,
1965
).
17.
P. C. W.
Davies
, “
Quantum tunneling time
,”
Am. J. Phys.
73
,
23
27
(
2005
).
18.
T.
Hartman
, “
Tunneling of a wave packet
,”
J. Appl. Phys.
33
,
3427
3433
(
1962
).
19.
E. H.
Hauge
and
J. A.
Stoveng
, “
Tunneling times: A critical review
,”
Rev. Mod. Phys.
61
,
917
936
(
1989
).
20.
V. S.
Olkhovsky
,
E.
Recami
, and
G.
Salesi
, “
Superluminal effects for quantum tunneling through two successive barriers
,”
Europhys. Lett.
57
,
879
884
(
2002
).
21.
V.
Petrillo
and
V. S.
Olkhovsky
, “
Time asymptotic expansion of the tunneled wave function for a double barrier potential
,”
Europhys. Lett.
74
,
327
333
(
2006
).
22.
H. G.
Winful
, “
Tunneling time, the Hartman effect and superluminality: A proposed resolution of an old paradox
,”
Phys. Rep.
436
,
1
69
(
2006
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.