The growth of a bacterial culture is one of the most familiar examples of exponential growth, with important consequences in biology and medicine. Bacterial growth involves more than just a rate constant. To sustain exponential growth, the cell must carefully coordinate the accumulation of mass, constant replication of the chromosome, and physical division. Hence, the growth rate is centrally important in any physical and chemical description of a bacterial cell. These aspects of bacterial growth can be described by empirical laws that suggest simple and intuitive models. Therefore, a quantitative discussion of bacterial growth could be a part of any undergraduate biophysics course. We present a general overview of some classic experimental studies and mathematical models of bacterial growth from a mostly physical perspective.

1.
P.
Nelson
,
Biological Physics: Energy, Information, Life
(
Freeman
,
New York
,
2003
).
2.
J.
Monod
, “
The growth of bacterial cultures
,”
Annu. Rev. Microbiol.
3
,
371
394
(
1949
).
3.
F. C.
Neidhardt
, “
Bacterial growth: Constant obsession with dN/dt
,”
J. Bacteriol.
181
,
7405
7408
(
1999
).
4.
S.
Cooper
, “
On the fiftieth anniversary of the Schaechter, Maaløe, Kjeldgaard experiments: Implications for cell-cycle and cell-growth control
,”
BioEssays
30
,
1019
1024
(
2008
).
5.
A. L.
Koch
,
Bacterial Growth and Form
(
Kluwer
,
Dordrecht
,
2001
).
6.
E.
Boye
and
K.
Nordstrom
, “
Coupling the cell cycle to cell growth
,”
EMBO Rep.
4
,
757
760
(
2003
).
7.
J. D.
Wang
and
P. A.
Levin
, “
OPINION: Metabolism, cell growth and the bacterial cell cycle
,”
Nat. Rev. Microbiol.
7
,
822
827
(
2009
).
8.
A. L.
Koch
, “
Why can’t a cell grow infinitely fast?
,”
Can. J. Microbiol.
34
,
421
426
(
1988
).
9.
O.
Maaløe
, “
Regulation of the protein synthesizing machinery—Ribosomes, tRNA, factors and so on
,” in
Biological Regulation and Development
, edited by
R. F.
Goldberg
(
Plenum
,
New York
,
1979
), pp.
487
542
.
10.
H.
Bremer
and
P. P.
Dennis
, “
Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate
,” in
Escherichia Coli and Salmonella: Cellular and Molecular Biology
, 2nd ed., edited by
F. C.
Neidhardt
and
R.
Curtiss
(
American Society for Microbiology
,
Washington, D.C.
,
1996
), Chap. 97, pp.
1553
1568
.
11.
U.
Alon
,
An Introduction to Systems Biology: Design Principles of Biological Circuits
(
Chapman and Hall
,
London
/
CRC
,
London
,
2007
).
12.
R. K.
Hobbie
and
B. J.
Roth
,
Intermediate Physics for Medicine and Biology
(
Springer
,
New York
,
2007
).
13.
R. K.
Hobbie
, “
Teaching exponential growth and decay: Examples from medicine
,”
Am. J. Phys.
41
,
389
393
(
1973
).
14.
L. J.
Curtis
, “
Concept of the exponential law prior to 1900
,”
Am. J. Phys.
46
,
896
906
(
1978
).
15.
E. O.
Powell
, “
Growth rate and generation time of bacteria
,”
Microbiology
15
,
492
511
(
1956
).
16.
K. R.
Ryan
and
L.
Shapiro
, “
Temporal and spatial regulation in prokaryotic cell cycle progression and development
,”
Annu. Rev. Biochem.
72
,
367
394
(
2003
).
17.
W. E.
Ricker
, “
Growth Rates and Models
,” in
Fish Physiology: Bioenergetics and Growth
, edited by
W. S.
Hoar
,
D. J.
Randall
, and
J. R.
Brett
(
Academic
,
New York
,
1979
), pp.
678
743
.
18.
P. F.
Verhulst
, “
Notice sur la loi que la population suit dans son accroissement
,”
Correspondance Mathématique et Physique
10
,
113
121
(
1838
).
19.
R.
Glaser
,
Biophysics
(
Springer
,
New York
,
2001
).
20.
B.
Gompertz
, “
On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies
,”
Philos. Trans. R. Soc. London
115
,
513
583
(
1825
).
21.
M. H.
Zwietering
,
I.
Jongenburger
,
F. M.
Rombouts
, and
K.
Vantriet
, “
Modeling of the bacterial-growth curve
,”
Appl. Environ. Microbiol.
56
,
1875
1881
(
1990
).
22.
C. N.
Hinshelwood
, “
On the chemical kinetics of autosynthetic systems
,”
J. Chem. Soc.
1952
,
745
755
.
23.
M.
Schaechter
,
O.
Maaløe
, and
N. O.
Kjeldgaard
, “
Dependency on medium and temperature of cell size and chemical composition during balanced growth of
,”
J. Gen. Microbiol.
19
,
592
606
(
1958
).
24.
R. A.
Cox
, “
Correlation of the rate of protein synthesis and the third power of the RNA: Protein ratio in Escherichia coli and Mycobacterium tuberculosis
,”
Microbiology
149
,
729
737
(
2003
).
25.
S.
Cooper
and
C. E.
Helmstetter
, “
Chromosome replication and the division cycle of Escherichia coli B/r
,”
J. Mol. Biol.
31
,
519
540
(
1968
).
26.
W. D.
Donachie
, “
Relation between cell size and time of initiation of DNA replication
,”
Nature (London)
219
,
1077
1079
(
1968
).
27.
A.
Novick
and
L.
Szilard
, “
Description of the chemostat
,”
Science
112
,
715
716
(
1950
).
28.
S.
Klumpp
,
Z.
Zhang
, and
T.
Hwa
, “
Growth rate-dependent global effects on gene expression in bacteria
,”
Cell
139
,
1366
1375
(
2009
).
29.
A. A.
Bartlett
, “
Forgotten fundamentals of the energy crisis
,”
Am. J. Phys.
46
,
876
888
(
1978
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.