Dirac’s first-order differential equation for relativistic spin 1/2 fermions can be extended to massless bosons using a formalism developed by Steven Weinberg. Weinberg’s theory is based heavily on details of the Lorentz and Poincaré groups and may not be accessible to the average reader. Although Weinberg’s theory was formulated over 40 years ago and his equations are easy to write down, few physicists seem to be familiar with them, and they are not discussed in standard quantum texts. In this paper we demonstrate the utility of his methods. Weinberg’s equations, which are valid for arbitrary spin, can be put in a form analogous to the Dirac equation for massless particles. Due to transversality conditions imposed on the theory so that it satisfies the second-order Klein–Gordon equation, we recast the theory in terms of a two-component Dirac–Pauli spinor. The theory is presented in some detail for j=1, corresponding to the photon and the vector Maxwell equations, and for j=2, corresponding to a graviton-like particle and a tensor version of Maxwell’s equations. These latter equations determine the polarization of gravitational waves in the weak field approximation. Our results correspond to those from the traceless-transverse gauge of general relativity.

1.
P. A. M.
Dirac
,
The Principals of Quantum Mechanics
, 4th ed. (
Clarendon
,
Oxford
,
1958
), Sec. XI.
2.
S. S.
Schweber
,
H. A.
Bethe
, and
F.
de Hoffman
,
Mesons and Fields
(
Row, Peterson
,
New York
,
1956
), Vol.
1
.
3.
J. D.
Bjorken
and
S. D.
Drell
,
Relativistic Quantum Mechanics
(
McGraw-Hill
,
New York
,
1964
).
4.
M.
Kaku
,
Quantum Field Theory
(
Oxford U. P.
,
New York
,
1993
).
5.
S.
Weinberg
, “
Feynman rules for any spin
,”
Phys. Rev. B
134
,
B882
B896
(
1964
).
6.
Reference 4, p.
93
.
7.
Reference 5, p.
B888
, Eqs. (4.19) and (4.20).
8.
Reference 4, p.
56
, Eq. (2.111).
9.
M.
Jacob
and
G. C.
Wick
, “
On the general theory of collisions for particles with spin
,”
Ann. Phys. (N.Y.)
7
,
404
428
(
1959
).
10.
B.
Weingard
, “
Some comments concerning spin and relativity
,”
Br. J. Philos. Sci.
40
,
287
288
(
1989
).
11.
M. T.
Simon
,
M.
Seetharaman
, and
P. M.
Mathews
, “
Covariant wave functions with invariant helicity for massless particles
,”
Int. J. Theor. Phys.
6
,
399
406
(
1972
).
12.
E. P.
Wigner
, “
Relativistic invariance and quantum phenomena
,”
Rev. Mod. Phys.
29
,
255
268
(
1957
).
13.
S.
Weinberg
,
Quantum Theory of Fields
(
Cambridge U. P.
,
Cambridge
,
2009
), Vol.
1
, pp.
71
81
,
207
213
,
246
255
.
14.
L.
Bass
and
E.
Schrödinger
, “
Must the photon mass be zero?
,”
Proc. R. Soc. London, Ser. A
232
,
1
6
(
1955
).
15.
Reference 5, p.
B888
.
16.
I.
Bialynicki-Birula
, “
On the wave function of the photon
,”
Acta Physiol. Pol.
86
,
897
910
(
1994
).
17.
I.
Bialynicki-Birula
, “
The Photon Wave
,” in
Coherence and Quantum Optics
, edited by
J. H.
Eberly
,
L.
Mandel
, and
E.
Wolf
(
Plenum
,
New York
,
1996
), Vol.
7
, p.
313
.
18.
A.
Gersten
, “
Maxwell’s equations as the one-photon quantum equation
,”
Found. Phys. Lett.
12
,
291
298
(
1999
).
19.
A.
Gersten
, “
Quantum equations for massless particles of any spin
,”
Found. Phys. Lett.
13
,
185
192
(
2000
).
20.
M. G.
Raymer
and
B. J.
Smith
, “
What is a photon
,” in
SPIE Conference Optics and Photonics, Conference Number 5866, The Nature of Light
, San Diego,
2005
.
21.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
, 2nd ed. (
Oxford U. P.
,
New York
,
1968
).
22.
A. R.
Edmonds
,
Angular Momentum in Quantum Physics
(
Princeton U. P.
,
Princeton, NJ
,
1957
).
23.
M.
Tinkham
,
Group Theory in Quantum Mechanics
(
McGraw-Hill
,
New York
,
1964
), Secs. 5–11.
24.
Reference 22, Eq. (5.9.1).
25.
Reference 21, Eq. (4.38).
26.
Reference 4, Sec. 2.4, p.
43
.
27.
J. E.
Sipe
, “
Photon wave functions
,”
Phys. Rev. A
52
,
1875
1883
(
1995
).
28.
P. A. M.
Dirac
,
General Theory of Relativity
(
Princeton U. P.
,
Princeton, NJ
,
1996
).
29.
M. P.
Hobson
,
G.
Efstathiou
, and
A. N.
Lasenley
,
General Relativity, An Introduction for Physicists
(
Cambridge U. P.
,
New York
,
2007
), Chap. 17–19.
30.
B. F.
Schutz
,
A First Course in General Relativity
(
Cambridge U. P.
,
Princeton, NJ
,
1990
), Chap. 8–9.
31.
S.
Weinberg
and
E.
Witten
, “
Limits on massless particles
,”
Phys. Lett. B
96
,
59
62
(
1980
).
32.
N. E.
Bjerrum-Bohr
,
J. F.
Donoghue
, and
B. R.
Holstein
, “
Quantum gravitational corrections to the nonrelativistic scattering potential of two masses
,”
Phys. Rev. D
67
,
084033
(
2003
);
33.
R.
Aris
,
Vectors, Tensors, and the Basic Equations of Fluid Mechanics
(
Dover
,
New York
,
1962
), pp.
34
35
.
34.
F. W.
Constant
,
Theoretical Physics, Mechanics of Particles, Rigid and Elastic Bodies, Fluids, and Heat Flow
(
Addison-Wesley
,
Cambridge
,
1954
), pp.
40
45
.
35.
Reference 21, pp.
53
,
66
.
36.
This property (A4) can be proven formally, but it also follows from elementary quantum-mechanical angular momentum theory (see Refs. 21 and 22) and dictates that an angular momentum state, which is an eigenstate of Jz, is simultaneously an eigenstate of J2.
37.
Reference 21, p.
149
.
38.
Reference 21, p.
52
.
39.
Reference 21, p.
54
.
40.
L. I.
Schiff
,
Quantum Mechanics
, 3rd ed. (
McGraw-Hill
,
New York
,
1968
), p.
203
.
41.
Reference 21, p.
17
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.