The quantum mechanics of two-electron systems is reviewed, starting with the ground state of the helium atom and heliumlike ions with central charge Z. The case of Z2 is rather straightforward. In contrast, for negative hydrogen ion with Z=1, the stability of H cannot be achieved using a product of individual electron wavefunctions and requires explicit account of the anticorrelation among the two electrons. The wavefunction proposed by Chandrasekhar is revisited, where the permutation symmetry is first broken and then restored by a counterterm. More difficult problems can be studied using the same strategy such as the stability of hydrogenlike ions for any value of the proton-to-electron mass ratio M/m, the energy of the lowest spin-triplet state of helium and heliumlike ions, and the stability of the doubly excited hydrogen ion with unnatural parity. The positronium molecule, which was predicted years ago and discovered recently, can also be shown to be stable against spontaneous dissociation. Emphasis is placed on symmetry breaking, which can either spoil or improve the stability.

1.
W.
Heisenberg
, “
Über die Spektra von Atomsystemen mit zwei Elektronen
,”
Z. Phys.
39
,
499
518
(
1926
).
2.
H. A.
Bethe
and
E. E.
Salpeter
,
Quantum Mechanics of One- and Two-Electron Atom
(
Academic
,
New York
,
1957
).
3.
David J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Pearson
,
Upper Saddle River, NJ
,
2005
).
4.
Franz
Mandl
,
Quantum Mechanics
(
Wiley
,
Chichester
,
1992
).
5.
David
Park
,
Introduction to Quantum Theory
, 3rd ed. (
McGraw-Hill
,
New York
,
1992
).
6.
Herbert
Kroemer
,
Quantum Mechanics for Engineering, Materials Science, and Applied Physics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1994
).
7.
See, for example, ⟨www.h-minus-ion.org/⟩.
8.
A. R. P.
Rau
, “
The negative ion of hydrogen
,”
J. Astrophys. Astron.
17
,
113
145
(
1996
).
9.
K. C.
Wali
,
A Quest for Perspectives: Selected Works of S. Chandrasekhar: with Commentary
(
Imperial College Press
,
London
,
2001
).
10.
Y.
Oka
,
O.
Kaneko
,
Y.
Takeiri
,
K.
Tsumori
,
M.
Osakabe
,
K.
Ikeda
,
E.
Asano
,
T.
Kawamoto
,
R.
Akiyama
, and
M.
Hamabe
, “
Operation of the negative ion-based neutral beam injection system during large helical device experimental campaigns
,”
Fusion Eng. Des.
56-57
,
533
537
(
2001
).
11.
J. A.
Wheeler
, “
Polyelectrons
,”
Ann. N.Y. Acad. Sci.
48
(
3
),
219
238
(
1946
).
12.
D. B.
Cassidy
and
A. P.
Mills
, “
The production of molecular positronium
,”
Nature (London)
449
,
195
197
(
2007
).
13.
S.
Chandrasekhar
, “
Some remarks on the negative hydrogen ion and its absorption coefficient
,”
Astrophys. J.
100
,
176
180
(
1944
).
14.
P. J. E.
Peebles
,
Quantum Mechanics
(
Princeton U.P.
,
Laurenceville
,
1992
).
15.
C. D.
Lin
, “
Hyperspherical coordinate approach to atomic and other Coulombic three-body systems
,”
Phys. Rep.
257
,
1
83
(
1995
).
16.
V. I.
Korobov
, “
Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies
,”
Phys. Rev. A
61
(
6
),
064503
1
(
2000
).
17.
W. A.
Goddard
, “
Concerning the stability of the negative ions H and Li
,”
Phys. Rev.
172
(
1
),
7
12
(
1968
).
18.
C. L.
Pekeris
, “
Ground state of two-electron atoms
,”
Phys. Rev.
112
(
5
),
1649
1658
(
1958
).
19.
E. A.
Hylleraas
, “
Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium
,”
Z. Phys.
54
,
347
366
(
1929
).
20.
V.
Fock
, “
Bemerkung zum Virialsatz
,”
Z. Phys.
63
,
855
858
(
1930
).
21.
M. J.
ten Hoor
, “
Which variational wave function is the best?
,”
Am. J. Phys.
63
(
7
),
647
653
(
1995
).
22.
E. A. G.
Armour
,
J. -M.
Richard
, and
K.
Varga
, “
Stability of few-charge systems in quantum mechanics
,”
Phys. Rep.
413
,
1
90
(
2005
).
23.
K. L.
Liu
and
Wai-Kee
Li
, “
The simple variational wavefunctions for the helium atom and the virial theorem
,”
Am. J. Phys.
58
(
12
),
1202
1203
(
1990
).
24.
J. D.
Baker
,
D. E.
Freund
,
R. N.
Hill
, and
J. D.
Morgan
, “
Radius of convergence and analytic behavior of the 1/Z expansion
,”
Phys. Rev. A
41
(
3
),
1247
1273
(
1990
).
25.
I. A.
Ivanov
, “
Radius of convergence of the 1/Z expansion for the ground state of a two-electron atom
,”
Phys. Rev. A
51
(
2
),
1080
1084
(
1995
).
26.
I. A.
Ivanov
, “
Analytic properties of the exact energy of the ground state of a two-electron atom as a function of 1/Z
,”
Phys. Rev. A
52
(
3
),
1942
1947
(
1995
).
27.
R. N.
Hill
, “
Proof that the H ion has only one bound state. Details and extension to finite nuclear mass
,”
J. Math. Phys.
18
(
12
),
2316
2330
(
1977
).
28.
D. S.
Hughes
and
C.
Eckart
, “
The effect of the motion of the nucleus on the spectra of Li I and Li II
,”
Phys. Rev.
36
,
694
698
(
1930
).
29.
V.
Korobov
and
J. -M.
Richard
, “
Mass-symmetry breaking in three-body ions
,”
Phys. Rev. A
71
(
2
),
024502
1
(
2005
).
30.
CRC Handbook of Chemistry and Physics
, edited by
D. R.
Lide
(
CRC
,
Boca Raton, FL
,
2002
).
31.
A table of ground-state energies is available, for example, at ⟨www.pa.uky.edu/verner/atom.html⟩. The excitations energies are compiled, for example, at the National Bureau of Standards and Technology, ⟨physics.nist.gov/asd3⟩.
32.
A. M.
Frolov
, “
High-precision, variational, bound-state calculations in coulomb three-body systems
,”
Phys. Rev. E
62
(
6
),
8740
8745
(
2000
).
33.
A. M.
Frolov
, “
Highly accurate three-body wavefunctions for the 23s(l=0) states in two-electron ions
,”
J. Phys. B
38
(
17
),
3233
3249
(
2005
).
34.
A. M.
Frolov
, “
Bound-state properties of negatively charged hydrogenlike ions
,”
Phys. Rev. A
58
(
6
),
4479
4483
(
1998
).
35.
E.
Wold
, “
A theoretical investigation of the closed state(2p)23P of the negative hydrogen ion
,”
Phys. Math. Univ. Oslo
13
,
1
11
(
1962
);
J.
Midtdal
, “
Some theoretical investigations for closed states of the negative hydrogen ion. Part 1
,” ibid.
21
,
1
35
(
1964
).
36.
J.
Midtdal
, “
Perturbation-theory expansions through 21st order of the nonrelativistic energies of the two-electron systems (2p)23P and (1s)21S
,”
Phys. Rev.
138
(
4A
),
A1010
A1014
(
1965
).
37.
G. W. F.
Drake
, “
Second bound state for the hydrogen negative ion
,”
Phys. Rev. Lett.
24
(
4
),
126
127
(
1970
).
38.
R.
Jáuregui
and
C. F.
Bunge
, “
The 2p23P state of H and the convergence of the CI series
,”
J. Chem. Phys.
71
,
4611
4613
(
1979
).
39.
A. P.
Mills
, “
Probable nonexistence of a P3e metastable excited state of the positronium negative ion
,”
Phys. Rev. A
24
(
6
),
3242
3244
(
1981
).
40.
A.
Ore
, “
Binding energy of polyelectrons
,”
Phys. Rev.
70
(
1–2
),
90
90
(
1946
).
41.
E. A.
Hylleraas
and
A.
Ore
, “
Binding energy of the positronium molecule
,”
Phys. Rev.
71
(
8
),
493
496
(
1947
).
42.
K.
Varga
,
J.
Usukura
, and
Y.
Suzuki
, “
Second bound state of the positronium molecule and biexcitons
,”
Phys. Rev. Lett.
80
(
9
),
1876
1879
(
1998
).
43.
M.
Puchalski
and
A.
Czarnecki
, “
Dipole excitation of the positronium molecule Ps2
,”
Phys. Rev. Lett.
101
(
18
),
183001
1
(
2008
).
44.
D.
Bressanini
,
M.
Mella
, and
G.
Morosi
, “
Stability of four-unit-charge systems: A quantum Monte Carlo study
,”
Phys. Rev. A
55
(
1
),
200
205
(
1997
).
45.
E. A.
Hylleraas
, “
Über den Grundterm der Zweielektronenprobleme von H, He, Li+, Be++, usw.
,”
Z. Phys.
65
,
209
225
(
1930
).
46.
Y.
Suzuki
and
K.
Varga
,
Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems
(
Springer-Verlag
,
Berlin
,
1998
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.