The distinction between the single Madelung constant that characterizes bulk materials and the range of Madelung constants that exists for real (finite) materials is emphasized. Madelung constants are calculated using a fast algorithm to compute Coulomb sums. The weighted averages of the specific ion Madelung constants provide a measure of the electrostatic potential for any cluster of ions. The central ions’ Madelung constants in a succession of progressively larger structures with the same symmetry as the bulk converge rapidly to the bulk Madelung constant if all the precursors to the bulk are electrically neutral. If this condition is satisfied, convergence is faster than other methods and is simpler to implement than the classical Ewald method. Applications to surface science and to the conformations and energies of nanostructures are made possible by this approach.

1.
E.
Madelung
, “
Das elektrische feld in systemen von regelmässig angeordneten punktladungen
,”
Z. Phys.
19
,
524
533
(
1918
).
2.
See, for example,
C.
Kittel
,
Introduction to Solid State Physics
, 5th ed. (
Wiley
,
New York
,
1995
).
3.
M.
Gaio
and
L.
Silvestrelli
, “
Efficient calculation of Madelung constants for cubic crystals
,”
Phys. Rev. B
79
,
012102
1
(
2009
).
4.
W. A.
Harrison
, “
Simple calculation of Madelung constants
,”
Phys. Rev. B
73
,
212103
1
(
2006
).
5.
S.
Tyagi
, “
New series representations to the Madelung constant
,”
Prog. Theor. Phys.
114
,
517
521
(
2005
).
6.
J. P.
Sauer
,
E.
Uglieno
,
E.
Garrone
, and
V. R.
Saunders
, “
Theoretical study of van der Waals complexes at surface sites in comparison with the experiment
,”
Chem. Rev. (Washington, D.C.)
94
,
2095
2160
(
1994
).
7.
P. P.
Ewald
, “
Die berechnung optischer und elektrostatischer gitterpotentiale
,”
Ann. Phys.
369
,
253
287
(
1921
).
8.
R. E.
Crandall
and
J. P.
Buhler
, “
Elementary function expansions for Madelung constants
,”
J. Phys. A
20
,
5497
5510
(
1987
).
9.
S.
Lamba
, “
Dipolar interaction energy for a system of magnetic nanoparticles
,”
Phys. Status Solidi B
241
,
3022
3028
(
2004
).
10.
R. P.
Grosso
,
J. T.
Fermann
, and
W. J.
Vining
, “
An in-depth look at the Madelung constant for cubic crystal systems
,”
J. Chem. Educ.
78
,
1198
1202
(
2002
).
11.
D.
Borwein
,
J. M.
Borwein
, and
K. F.
Taylor
, “
Convergence of lattice sums and Madelung’s constant
,”
J. Math. Phys.
26
,
2999
3009
(
1985
).
12.
M. D.
Baker
and
A. D.
Baker
, “
Teaching nanochemistry: Madelung constants of nanocrystals
,”
J. Chem. Educ.
(to be published).
13.
A. D.
Baker
and
M. D.
Baker
, “
Madelung constants of nanoparticles and nanosurfaces
,”
J. Phys. Chem. C
113
,
14793
14797
(
2009
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.