The problem of a body bouncing on a periodically oscillating surface is revisited to demonstrate chaos control. When the bouncing body is magnetic, it is possible to modify its behavior by adding a magnetic driving force. The mechanism of chaos control may be understood by means of a mechanical analysis which shows that the main result of applying the driving force is to shift the bifurcation diagram in such a way that chaotic behavior is replaced by periodic behavior and vice versa. A simple experiment is presented, along with a numerical simulation, that provides insight into chaos control.
REFERENCES
1.
2.
John. J.
D’Azzo
and Constantine H.
Houpis
, Feedback Control Systems Analysis and Synthesis
(McGraw-Hill
, New York
, 1966
).3.
S.
Boccaletti
, C.
Grebogi
, Y. -C.
Lai
, H.
Mancini
, and D.
Maza
, “The control of chaos: Theory and applications
,” Phys. Rep.
329
, 103
–197
(2000
).4.
Edward
Ott
, Celso
Grebogi
, and James A.
Yorke
, “Controlling chaos
,” Phys. Rev. Lett.
64
, 1196
–1199
(1990
).5.
Ricardo
Lima
and Marco
Pettini
, “Suppression of chaos by resonant parametric perturbations
,” Phys. Rev. A
41
, 726
–733
(1990
).6.
Anatonio
Azevedo
and Sergio M.
Rezende
, “Controlling chaos in spin-wave instabilities
,” Phys. Rev. Lett.
66
, 1342
–1345
(1991
).7.
Leoni
Fronzoni
, Michel
Giacondo
, and Marco
Pettini
, “Experimental evidence of suppression of chaos by resonant parametric perturbations
,” Phys. Rev. A
43
, 6483
–6487
(1991
).8.
W. L.
Ditto
, S. N.
Rauseo
, and M. L.
Spano
, “Experimental control of chaos
,” Phys. Rev. Lett.
65
, 3211
–3214
(1990
).9.
Bo
Peng
, Valery
Petrov
, and Kenneth
Showalter
, “Controlling chemical chaos
,” J. Phys. Chem.
95
, 4957
–4959
(1991
).10.
Rajarshi
Roy
, T. W.
Murphy
, Jr., T. D.
Maier
, and Z.
Gills
, “Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system
,” Phys. Rev. Lett.
68
, 1259
–1262
(1992
).11.
Gregory D.
VanWiggeren
and Rajarshi
Roy
, “Chaotic communication using time-delayed optical systems
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
(11
), 2129
–2156
(1999
).12.
Jonathan
Singer
and Haim H.
Bau
, “Active control of convection
,” Phys. Fluids. A
3
, 2859
–2865
(1991
).13.
J.
Singer
, Y. -Z.
Wang
, and Haim H.
Bau
, “Controlling a chaotic system
,” Phys. Rev. Lett.
66
, 1123
–1125
(1991
).14.
A.
Garfinkel
, M. L.
Spano
, W. L.
Ditto
, and J. N.
Weiss
, “Controlling cardiac chaos
,” Science
257
, 1230
–1235
(1992
).15.
Alan
Garfinkel
, James N.
Weiss
, William L.
Ditto
, and Mark L.
Spano
, “Chaos control of cardiac arrhythmias
,” Trends Cardiovasc. Med.
5
, 76
–80
(1995
).16.
Steven
Schiff
, Kristin
Jerger
, Duc H.
Duong
, Taeun
Chang
, Mark L.
Spano
, and William L.
Ditto
, “Controlling chaos in the brain
,” Nature (London)
370
, 615
–620
(1994
).17.
K.
Pyragas
and A.
Tamasevicius
, “Experimental control of chaos by delayed self-controlling feedback
,” Phys. Lett. A
180
, 99
–102
(1993
).18.
David J.
Christini
, James J.
Collins
, and Paul S.
Linsay
, “Experimental control of high-dimensional chaos: The driven double pendulum
,” Phys. Rev. E
54
, 4824
–4827
(1996
).19.
K.
Murali
and Sudeshna
Sinha
, “Experimental realization of chaos control by thresholding
,” Phys. Rev. E
68
, 016210
–1
(2003
).20.
Jonathan N.
Blakely
, Lucas
Illing
, and Daniel J.
Gauthier
, “Controlling fast chaos in delay dynamical systems
,” Phys. Rev. Lett.
92
, 193901
–1
(2004
).21.
Alexander
Ahlborn
and Ulrich
Parlitz
, “Stabilizing unstable steady states using multiple delay feedback control
,” Phys. Rev. Lett.
93
, 264101
–1
(2004
).22.
E. R.
Hunt
, “Stabilizing high-period orbits in a chaotic system: The diode resonator
,” Phys. Rev. Lett.
67
, 1953
–1955
(1991
).23.
E.
Fermi
, “On the origin of the cosmic radiation
,” Phys. Rev.
75
, 1169
–1174
(1949
).24.
25.
26.
M. A.
Naylor
, P.
Sánchez
, and Michael R.
Swift
, “Chaotic dynamics of an air-damped bouncing ball
,” Phys. Rev. E
66
, 057201
–1
(2002
).27.
César R.
de Oliveira
and Paulo S.
Goncalvez
, “Bifurcations and chaos for the quasiperiodic bouncing ball
,” Phys. Rev. E
56
, 4868
–4871
(1997
).28.
J. -C.
Géminard
and C.
Laroche
, “Energy of a single bead bouncing on a vibrating plate: Experiments and numerical simulations
,” Phys. Rev. E
68
, 031305
–1
(2003
).© 2009 American Association of Physics Teachers.
2009
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.