The problem of a body bouncing on a periodically oscillating surface is revisited to demonstrate chaos control. When the bouncing body is magnetic, it is possible to modify its behavior by adding a magnetic driving force. The mechanism of chaos control may be understood by means of a mechanical analysis which shows that the main result of applying the driving force is to shift the bifurcation diagram in such a way that chaotic behavior is replaced by periodic behavior and vice versa. A simple experiment is presented, along with a numerical simulation, that provides insight into chaos control.

1.
K.
Ogata
,
Modern Control Engineering
, 2nd ed. (
Prentice-Hall
,
Englewood, NJ
,
1990
).
2.
John. J.
D’Azzo
and
Constantine H.
Houpis
,
Feedback Control Systems Analysis and Synthesis
(
McGraw-Hill
,
New York
,
1966
).
3.
S.
Boccaletti
,
C.
Grebogi
,
Y. -C.
Lai
,
H.
Mancini
, and
D.
Maza
, “
The control of chaos: Theory and applications
,”
Phys. Rep.
329
,
103
197
(
2000
).
4.
Edward
Ott
,
Celso
Grebogi
, and
James A.
Yorke
, “
Controlling chaos
,”
Phys. Rev. Lett.
64
,
1196
1199
(
1990
).
5.
Ricardo
Lima
and
Marco
Pettini
, “
Suppression of chaos by resonant parametric perturbations
,”
Phys. Rev. A
41
,
726
733
(
1990
).
6.
Anatonio
Azevedo
and
Sergio M.
Rezende
, “
Controlling chaos in spin-wave instabilities
,”
Phys. Rev. Lett.
66
,
1342
1345
(
1991
).
7.
Leoni
Fronzoni
,
Michel
Giacondo
, and
Marco
Pettini
, “
Experimental evidence of suppression of chaos by resonant parametric perturbations
,”
Phys. Rev. A
43
,
6483
6487
(
1991
).
8.
W. L.
Ditto
,
S. N.
Rauseo
, and
M. L.
Spano
, “
Experimental control of chaos
,”
Phys. Rev. Lett.
65
,
3211
3214
(
1990
).
9.
Bo
Peng
,
Valery
Petrov
, and
Kenneth
Showalter
, “
Controlling chemical chaos
,”
J. Phys. Chem.
95
,
4957
4959
(
1991
).
10.
Rajarshi
Roy
,
T. W.
Murphy
, Jr.
,
T. D.
Maier
, and
Z.
Gills
, “
Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system
,”
Phys. Rev. Lett.
68
,
1259
1262
(
1992
).
11.
Gregory D.
VanWiggeren
and
Rajarshi
Roy
, “
Chaotic communication using time-delayed optical systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
(
11
),
2129
2156
(
1999
).
12.
Jonathan
Singer
and
Haim H.
Bau
, “
Active control of convection
,”
Phys. Fluids. A
3
,
2859
2865
(
1991
).
13.
J.
Singer
,
Y. -Z.
Wang
, and
Haim H.
Bau
, “
Controlling a chaotic system
,”
Phys. Rev. Lett.
66
,
1123
1125
(
1991
).
14.
A.
Garfinkel
,
M. L.
Spano
,
W. L.
Ditto
, and
J. N.
Weiss
, “
Controlling cardiac chaos
,”
Science
257
,
1230
1235
(
1992
).
15.
Alan
Garfinkel
,
James N.
Weiss
,
William L.
Ditto
, and
Mark L.
Spano
, “
Chaos control of cardiac arrhythmias
,”
Trends Cardiovasc. Med.
5
,
76
80
(
1995
).
16.
Steven
Schiff
,
Kristin
Jerger
,
Duc H.
Duong
,
Taeun
Chang
,
Mark L.
Spano
, and
William L.
Ditto
, “
Controlling chaos in the brain
,”
Nature (London)
370
,
615
620
(
1994
).
17.
K.
Pyragas
and
A.
Tamasevicius
, “
Experimental control of chaos by delayed self-controlling feedback
,”
Phys. Lett. A
180
,
99
102
(
1993
).
18.
David J.
Christini
,
James J.
Collins
, and
Paul S.
Linsay
, “
Experimental control of high-dimensional chaos: The driven double pendulum
,”
Phys. Rev. E
54
,
4824
4827
(
1996
).
19.
K.
Murali
and
Sudeshna
Sinha
, “
Experimental realization of chaos control by thresholding
,”
Phys. Rev. E
68
,
016210
1
(
2003
).
20.
Jonathan N.
Blakely
,
Lucas
Illing
, and
Daniel J.
Gauthier
, “
Controlling fast chaos in delay dynamical systems
,”
Phys. Rev. Lett.
92
,
193901
1
(
2004
).
21.
Alexander
Ahlborn
and
Ulrich
Parlitz
, “
Stabilizing unstable steady states using multiple delay feedback control
,”
Phys. Rev. Lett.
93
,
264101
1
(
2004
).
22.
E. R.
Hunt
, “
Stabilizing high-period orbits in a chaotic system: The diode resonator
,”
Phys. Rev. Lett.
67
,
1953
1955
(
1991
).
23.
E.
Fermi
, “
On the origin of the cosmic radiation
,”
Phys. Rev.
75
,
1169
1174
(
1949
).
24.
George M.
Zaslavsky
,
Chaos in Dynamic Systems
(
Harvard Academic
,
New York
,
1985
).
25.
The Nature of Chaos
, edited by
T.
Mullin
(
Clarendon
,
Oxford
,
1993
).
26.
M. A.
Naylor
,
P.
Sánchez
, and
Michael R.
Swift
, “
Chaotic dynamics of an air-damped bouncing ball
,”
Phys. Rev. E
66
,
057201
1
(
2002
).
27.
César R.
de Oliveira
and
Paulo S.
Goncalvez
, “
Bifurcations and chaos for the quasiperiodic bouncing ball
,”
Phys. Rev. E
56
,
4868
4871
(
1997
).
28.
J. -C.
Géminard
and
C.
Laroche
, “
Energy of a single bead bouncing on a vibrating plate: Experiments and numerical simulations
,”
Phys. Rev. E
68
,
031305
1
(
2003
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.