Frequency modulation and harmonic detection are extensively employed in a variety of experimental techniques and offer a detection sensitivity limited only by quantum noise. We discuss a simple experiment using wavelength modulation spectroscopy and near infrared diode lasers operating in the 780 nm region to detect rubidium hyperfine spectra. Modulation spectroscopy techniques are employed to improve the signal to noise ratio for the detection of weak signals and thus significantly improve the sensitivity and specificity for detection. By using quantum cascade lasers and wavelength modulation spectroscopy, one can detect trace species at sub-ppm level, which has numerous applications in diverse areas such as medical diagnostics, food processing, industrial applications, and environmental monitoring.

1.
J. C.
Camparo
, “
The diode laser in atomic physics
,”
Contemp. Phys.
26
,
443
477
(
1985
).
2.
C.
Wieman
and
L.
Hollberg
, “
Using diode lasers for atomic physics
,”
Rev. Sci. Instrum.
62
,
1
20
(
1991
).
3.
K. B.
MacAdam
,
A.
Steinbach
, and
C.
Wieman
, “
A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb
,”
Am. J. Phys.
60
,
1098
1111
(
1992
).
4.
C.
Wieman
,
G.
Flowers
, and
S.
Gilbert
, “
Inexpensive laser cooling and trapping experiment for undergraduate laboratories
,”
Am. J. Phys.
63
,
317
330
(
1995
).
5.
K. G.
Libbrecht
,
R. A.
Boyd
,
P. A.
Willems
,
T. L.
Gustavson
, and
D. K.
Kim
, “
Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells
,”
Am. J. Phys.
63
,
729
737
(
1995
).
6.
R. A.
Boyd
,
J. L.
Bliss
, and
K. G.
Libbrecht
, “
Teaching physics with 670-nm diode lasers-experiments with Fabry–Pérot cavities
,”
Am. J. Phys.
64
,
1109
1116
(
1996
).
7.
E. A.
Van Baak
, “
Resonant Faraday rotation as a probe of atomic dispersion
,”
Am. J. Phys.
64
,
724
735
(
1996
).
8.
M.
Terrell
and
M. F.
Masters
, “
Laser spectroscopy of the cesium dimer as a physics laboratory experiment
,”
Am. J. Phys.
64
,
1116
1120
(
1996
).
9.
D.
Leahy
,
J. T.
Hastings
, and
P. M.
Wilt
, “
Temperature dependence of Doppler-broadening in rubidium: An undergraduate experiment
,”
Am. J. Phys.
65
,
367
371
(
1997
).
10.
G. N.
Rao
,
M. N.
Reddy
, and
E.
Hecht
, “
Atomic hyperfine structure studies using temperature/current tuning of diode lasers: An undergraduate experiment
,”
Am. J. Phys.
66
,
702
712
(
1998
).
11.
R. S.
Conroy
,
A.
Carleton
,
A.
Carruthers
,
B. D.
Sinclair
,
C. F.
Rae
, and
K.
Dholakia
, “
A visible extended cavity diode laser for the undergraduate laboratory
,”
Am. J. Phys.
68
,
925
931
(
2000
).
12.
A. J.
Olson
,
E. J.
Carlson
, and
S. K.
Mayer
, “
Two-photon spectroscopy of rubidium using a grating-feedback diode laser
,”
Am. J. Phys.
74
,
218
223
(
2006
).
13.
K. G.
Libbrecht
and
M. W.
Libbrecht
, “
Interferometric measurement of the resonant absorption and refractive index in rubidium gas
,”
Am. J. Phys.
74
,
1055
1060
(
2006
).
14.
J.
Ye
,
L. S.
Ma
, and
J.
Hall
, “
Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy
,”
J. Opt. Soc. Am. B
15
,
6
15
(
1998
).
15.
A.
Karpf
and
G. N.
Rao
, “
Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser
,”
Appl. Opt.
48
,
408
413
(
2009
).
16.
G. V. H.
Wilson
, “
Modulation broadening of NMR and ESR line shapes
,”
J. Appl. Phys.
34
,
3276
3285
(
1963
).
17.
R.
Arndt
, “
Analytical line shapes for signals broadened by modulation
,”
J. Appl. Phys.
36
,
2522
2524
(
1965
).
18.
M.
Angelmahr
,
A.
Miklós
, and
P.
Hess
, “
Wavelength- and amplitude-modulated photoacoustics: Comparison of simulated and measured spectra of higher harmonics
,”
Appl. Opt.
47
,
2806
2812
(
2008
).
19.
C.
Dyroff
,
A.
Zahn
,
W.
Freude
,
B.
Janker
, and
P.
Werle
, “
Multipass cell design for Stark-modulation spectroscopy
,”
Appl. Opt.
46
,
4000
4007
(
2007
).
20.
X.
Yang
,
Y.
Chen
,
P.
Cai
,
H.
Wang
,
J.
Chen
, and
C.
Xia
, “
Application of Zeeman modulation Faraday spectroscopy to the measurement of a magnetic field
,”
Appl. Opt.
37
,
4806
4809
(
1998
).
21.
R. W. P.
Drever
,
J. L.
Hall
,
F. V.
Kowalski
,
J.
Hough
,
G. M.
Ford
,
A. J.
Munley
, and
H.
Ward
, “
Laser phase and frequency stabilization using an optical resonator
,”
Appl. Phys. B
31
,
97
105
(
1983
).
22.
J.
Reid
and
D.
Labrie
, “
Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory
,”
Appl. Phys. B
26
,
203
210
(
1981
).
23.
D. S.
Bomse
,
A. C.
Stanton
, and
J. A.
Silver
, “
Frequency modulation and wavelength modulation spectroscopies: Comparison of experimental methods using a lead-salt diode laser
,”
Appl. Opt.
31
,
718
731
(
1992
).
24.
J. A.
Silver
, “
Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods
,”
Appl. Opt.
31
,
707
717
(
1992
).
25.
J. M.
Supplee
,
E. A.
Whittaker
, and
W.
Lenth
, “
Theoretical description of frequency modulation and wavelength modulation spectroscopy
,”
Appl. Opt.
33
,
6294
6302
(
1994
).
26.
M. G.
Allen
,
K. L.
Carleton
,
S. J.
Davis
,
W. J.
Kessler
,
C. E.
Otis
,
D. A.
Palombo
, and
D. M.
Sonnenfroh
, “
Ultrasensitive dual-beam absorption and gain spectroscopy: Applications for near-infrared and visible laser sensors
,”
Appl. Opt.
34
,
3240
3249
(
1995
).
27.
A. N.
Dharamsi
, “
A theory of modulation spectroscopy with applications of higher harmonic detection
,”
J. Phys. D
29
,
540
549
(
1996
).
28.
V. G.
Avetisov
and
P.
Kauranen
, “
Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: Theoretical, numerical, and experimental investigation of line shapes
,”
Appl. Opt.
35
,
4705
4723
(
1996
).
29.
K.
Namjou
,
S.
Cai
,
E. A.
Whittaker
,
J.
Faist
,
G.
Gmachl
,
F.
Capasso
,
D. L.
Sivco
, and
A. Y.
Cho
, “
Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum cascade laser
,”
Opt. Lett.
23
,
219
221
(
1998
).
30.
J. T. C.
Liu
,
J. B.
Jeffries
, and
R. K.
Hanson
, “
Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra
,”
Appl. Opt.
43
,
6500
6509
(
2004
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.