A two-dimensional model of distinguishable particles that obey reversible deterministic laws of motion is used to illustrate the role played by thermal noise in the emergence of irreversible macroscopic behavior. Particles move in an array of square cells with four possible directions of motion. Particles that coincide with one or more particles in the same cell rotate by 90°. We study the evolution of the system from a fine-grained perspective, which allows us to follow the trajectory of each particle, and a coarse-grained perspective. The loss of information due to coarse-graining is compared with the loss of information resulting from noise. It is shown how particle and system trajectories can be used to determine if a system is quasi-ergodic. A modification of the interaction rule ensures that particles undergo momentum-conserving collisions equivalent to those of a simple lattice gas.

1.
P. K.
Pathria
,
Statistical Mechanics
(
Elsevier Butterworth-Heinemann
,
Oxford
,
1996
), 2nd ed.
2.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics, Part 1
(
Pergamon Press
,
Oxford
,
1986
), 3rd ed.
3.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
).
4.
I.
Prigogine
,
Order Out of Chaos
(
Bantam Books
,
New York
,
1984
).
5.
I.
Prigogine
and
I.
Stengers
,
The End of Certainty
(
The Free Press
,
New York
,
1997
).
6.
J.
Lebowitz
, “
Boltzmann’s entropy and the time’s arrow
,”
Phys. Today
46
(
9
),
32
38
(
1993
).
7.
J.
Lebowitz
, “
Microscopic origin of irreversible behavior
,”
Physica A
263
,
516
527
(
1999
).
8.
W. G.
Hoover
,
Time Reversibility, Computer Simulation, and Chaos
(
World Scientific
,
Singapore
,
1999
).
9.
O.
Penrose
,
The Emperor’s New Mind
(
Oxford U. P.
,
Oxford
,
1999
).
10.
G. R.
Fowles
, “
Time’s arrow: A numerical experiment
,”
Am. J. Phys.
62
,
321
328
(
1994
).
11.
P.-M.
Binder
,
J. M.
Pedraza
, and
S.
Garzón
, “
An invertibility paradox
,”
Am. J. Phys.
67
,
1091
1093
(
1999
).
12.
T.
Gold
, “
The arrow of time
,”
Am. J. Phys.
30
,
403
410
(
1962
).
13.
R. H.
Penfield
, “
More on the arrow of time
,”
Am. J. Phys.
34
,
422
426
(
1966
).
14.
A.
Hobson
, “
Irreversibility in simple systems
,”
Am. J. Phys.
34
,
411
416
(
1966
).
15.
L. S.
Schulman
,
Time’s Arrows and Quantum Measurement
(
Cambridge U. P.
,
Cambridge
,
1997
).
16.
J. R.
Dorfman
,
An Introduction to Chaos in Nonequilibrium Statistical Mechanics
(
Cambridge U. P.
,
Cambridge
,
1999
).
17.
G. L.
Baker
, “
A simple model of irreversibility
,”
Am. J. Phys.
54
,
704
708
(
1986
).
18.
H. S.
Leff
, “
Thermodynamic insights from a one-particle gas
,”
Am. J. Phys.
63
,
895
905
(
1995
).
19.
R. M.
Sperandeo-Mineo
and
A.
Falsone
, “
Computer simulation of ergodicity and mixing in dynamical systems
,”
Am. J. Phys.
58
,
1073
1078
(
1990
).
20.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1992
).
21.
J.
Lebowitz
and
O.
Penrose
, “
Modern ergodic theory
,”
Phys. Today
26
(
2
),
23
29
(
1973
).
22.
W.
Ebeling
and
I. M.
Sokolov
,
Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
(
World Scientific
,
Hackensack, NJ
,
2005
).
23.
H.
Gould
,
J.
Tobochnik
, and
W.
Christian
,
Computer Simulation Methods: Applications to Physical Systems
(
Addison-Wesley
,
San Francisco
,
2007
), 3rd ed.
24.
D. H.
Rothman
, “
Lattice-gas models of phase separation: Interfaces, phase transitions and multiphase flow
,”
Rev. Mod. Phys.
66
,
1417
1479
(
1994
).
25.
J.
Hardy
,
Y.
Pomeau
, and
O.
de Pazzis
, “
Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions
,”
J. Math. Phys.
14
,
1746
1759
(
1973
).
26.
J.
Hardy
,
O.
de Pazzis
, and
Y.
Pomeau
, “
Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions
,”
Phys. Rev. A
13
,
1949
1961
(
1976
).
27.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
, “
Lattice-gas automata for the Navier-Stokes equation
,”
Phys. Rev. Lett.
56
,
1505
1508
(
1986
).
28.
D. H.
Rothman
and
S.
Zalesk
,
Lattice-Gas Cellular Automata
(
Cambridge U. P.
,
Cambridge
,
1997
).
29.
The New Physics
, edited by
P.
Davies
(
Cambridge U. P.
,
Cambridge
,
1998
).
30.
B. B.
Laird
, “
Entropy, disorder, and freezing
,”
J. Chem. Educ.
76
,
1388
1390
(
1999
).
31.
H.
Gould
and
J.
Tobochnick
,
Thermal and Statistical Physics
(
Princeton U. P.
,
Princeton
, in press).
32.
S.
Wolfram
, “
Cellular automata as models of complexity
,”
Nature (London)
311
,
419
424
(
1984
).
33.
N.
Margolus
, “
Physics-like models of computation
,”
Physica D
10
,
81
95
(
1984
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.