A low-cost Raman system was constructed and used to perform Raman scattering measurements on liquid carbon disulfide at different sample temperatures. The ν1 and ν3 bands are identified based on the frequencies calculated by the normal mode analysis. The ratio of the intensities of the anti-Stokes and Stokes bands can be used to illustrate the Boltzmann distribution of the molecules among the vibrational energy levels.

1.
B. R.
Fugitt
and
A. S.
Rupaal
, “
Raman spectroscopy experiment for the senior laboratory
,”
Am. J. Phys.
36
,
17
23
(
1968
).
2.
D. F.
Edwards
and
C. Y.
She
, “
Laser-excited Raman spectroscopy
,”
Am. J. Phys.
40
,
1389
1399
(
1972
).
3.
R.
Feinberg
, “
A simple apparatus for observing the Raman effect
,”
Am. J. Phys.
58
,
893
893
(
1989
).
4.
A.
Compaan
,
A.
Wagoner
, and
A.
Aydinli
, “
Rotational Raman scattering in the instructional laboratory
,”
Am. J. Phys.
62
,
639
645
(
1994
).
5.
D.
Cleveland
,
M.
Carlson
,
E. D.
Hudspeth
,
L. E.
Quattrochi
,
K. L.
Batchler
,
S. A.
Balram
,
Seongun
Hong
, and
R. G.
Michel
, “
Raman spectroscopy for the undergraduate teaching laboratory: Quantification of ethanol concentration in consumer alcoholic beverages and qualitative identification of marine diesels using a miniature Raman spectrometer
,”
Spectrosc. Lett.
40
,
903
924
(
2007
).
6.
B. L.
Sands
,
M. J.
Welsh
,
S.
Kin
,
R.
Marhatta
,
J. D.
Hinkle
, and
S. B.
Bayram
, “
Raman scattering spectroscopy of liquid nitrogen molecules: An advanced undergraduate physics laboratory experiment
,”
Am. J. Phys.
75
,
488
495
(
2007
).
7.
P.
Bisson
,
G.
Parodi
,
D.
Rigos
, and
J. E.
Whitten
, “
Low-cost Raman spectroscopy using a violet diode laser
,”
Chem. Educ.
11
(
2
),
1
6
(
2006
), ⟨chemeducator.org/sbibs/s0011002/spapers/1120088jw.htm⟩.
8.
E. D.
Hudspeth
,
D. C.
Kathleen
,
L.
Batchler
,
P. A.
Nguyen
,
T. L.
Feaser
,
L. E.
Quattrochi
,
J.
Morenz
,
S. A.
Balram
, and
R. G.
Michel
, “
Teaching Raman spectroscopy in both the undergraduate classroom and the laboratory with a portable Raman instrument
,”
Spectrosc. Lett.
39
,
99
115
(
2006
).
9.
A.
Singha
,
P.
Dhar
, and
A.
Roy
, “
A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy
,”
Am. J. Phys.
73
,
224
233
(
2005
).
10.
G. A.
Lorigan
,
B. M.
Patterson
,
A. J.
Sommer
, and
N. D.
Danielson
, “
Cost-effective spectroscopic instrumentation for the physical chemistry laboratory
,”
J. Chem. Educ.
79
,
1264
1266
(
2002
).
11.
R.
Voor
,
L.
Chow
, and
A.
Schulte
, “
Micro-Raman spectroscopy in the undergraduate research laboratory
,”
Am. J. Phys.
62
,
429
434
(
1994
).
12.
T. R.
Gilson
and
P. J.
Hendra
,
Laser Raman Spectroscopy
(
Wiley
,
London
,
1970
), pp.
9
12
.
13.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
,
Group Theory: Application to the Physics of Condensed Matter
(
Springer-Verlag
,
Berlin
,
2008
), pp.
164
165
.
14.
K.
Nakamoto
,
Infrared and Raman Spectra of Inorganic and Coordination Compounds
, 4th ed. (
Wiley
,
New York
,
1986
), pp.
12
17
.
15.
Sulfur isotope data are from The Berkeley Laboratory Isotopes Project, ⟨ie.lbl.gov/education/parent/S_iso.htm⟩.
16.
W. S.
Li
,
Z. X.
Shen
,
Z. C.
Feng
, and
S. J.
Chua
, “
Temperature dependence of Raman scattering in hexagonal gallium nitride films
,”
J. Appl. Phys.
87
,
3332
3337
(
2000
).
17.
K. A.
Alim
,
V. A.
Fonobeov
, and
A. A.
Balandin
, “
Origin of the optical phonon frequency shifts in ZnO quantum dots
,”
Appl. Phys. Lett.
86
,
053103
1
(
2005
).
18.
A. B. F.
Duncan
and
A.
Weissberger
,
Technique of Organic Chemistry
(
Interscience
,
New York
,
1944
), Vol.
9
, p.
198
.
19.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
Wiley
,
New York
,
1996
), pp.
117
118
.
20.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
, “
Anharmonic effects in light scattering due to optical phonons in silicon
,”
Phys. Rev. B
28
,
1928
1934
(
1983
).
21.
D.
Wang
,
M.
Park
,
Y. N.
Saripalli
,
M. A. L.
Johnson
,
C.
Zeng
,
D. W.
Barlage
, and
J. P.
Long
, “
Optical spectroscopic analysis of selected area epitaxially re-grown n+ GaN
,”
J. Appl. Phys.
99
,
123106
1
(
2006
).
22.
Practical Raman Spectroscopy
, edited by
D. J.
Gardiner
and
P. R.
Graves
(
Springer-Verlag
,
Berlin
,
1989
), p.
27
.
23.
R. L.
McCreery
,
Raman Spectroscopy for Chemical Analysis
(
Wiley
,
New York
,
2000
), pp.
108
109
.
24.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
, revised edition (
Dover
,
New York
,
1980
), pp.
177
178
.
25.
S.
Ikawa
and
E.
Whalley
, “
Polarized and depolarized Raman spectra of liquid carbon disulfide at 0–10 kbar. 3. Interaction-induced v2 and v3 scattering and the fluctuation of the local field
,”
J. Phys. Chem.
94
,
7834
7839
(
1990
).
26.
J. C.
Evans
and
H. J.
Bernstein
, “
Intensity in the Raman effect. V. The effect of intermolecular interaction on the Raman spectrum of carbon disulfide
,”
Can. J. Chem.
34
,
1127
1133
(
1956
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.