A low-cost Raman system was constructed and used to perform Raman scattering measurements on liquid carbon disulfide at different sample temperatures. The and bands are identified based on the frequencies calculated by the normal mode analysis. The ratio of the intensities of the anti-Stokes and Stokes bands can be used to illustrate the Boltzmann distribution of the molecules among the vibrational energy levels.
REFERENCES
1.
B. R.
Fugitt
and A. S.
Rupaal
, “Raman spectroscopy experiment for the senior laboratory
,” Am. J. Phys.
36
, 17
–23
(1968
).2.
D. F.
Edwards
and C. Y.
She
, “Laser-excited Raman spectroscopy
,” Am. J. Phys.
40
, 1389
–1399
(1972
).3.
R.
Feinberg
, “A simple apparatus for observing the Raman effect
,” Am. J. Phys.
58
, 893
–893
(1989
).4.
A.
Compaan
, A.
Wagoner
, and A.
Aydinli
, “Rotational Raman scattering in the instructional laboratory
,” Am. J. Phys.
62
, 639
–645
(1994
).5.
D.
Cleveland
, M.
Carlson
, E. D.
Hudspeth
, L. E.
Quattrochi
, K. L.
Batchler
, S. A.
Balram
, Seongun
Hong
, and R. G.
Michel
, “Raman spectroscopy for the undergraduate teaching laboratory: Quantification of ethanol concentration in consumer alcoholic beverages and qualitative identification of marine diesels using a miniature Raman spectrometer
,” Spectrosc. Lett.
40
, 903
–924
(2007
).6.
B. L.
Sands
, M. J.
Welsh
, S.
Kin
, R.
Marhatta
, J. D.
Hinkle
, and S. B.
Bayram
, “Raman scattering spectroscopy of liquid nitrogen molecules: An advanced undergraduate physics laboratory experiment
,” Am. J. Phys.
75
, 488
–495
(2007
).7.
P.
Bisson
, G.
Parodi
, D.
Rigos
, and J. E.
Whitten
, “Low-cost Raman spectroscopy using a violet diode laser
,” Chem. Educ.
11
(2
), 1
–6
(2006
), ⟨chemeducator.org/sbibs/s0011002/spapers/1120088jw.htm⟩.8.
E. D.
Hudspeth
, D. C.
Kathleen
, L.
Batchler
, P. A.
Nguyen
, T. L.
Feaser
, L. E.
Quattrochi
, J.
Morenz
, S. A.
Balram
, and R. G.
Michel
, “Teaching Raman spectroscopy in both the undergraduate classroom and the laboratory with a portable Raman instrument
,” Spectrosc. Lett.
39
, 99
–115
(2006
).9.
A.
Singha
, P.
Dhar
, and A.
Roy
, “A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy
,” Am. J. Phys.
73
, 224
–233
(2005
).10.
G. A.
Lorigan
, B. M.
Patterson
, A. J.
Sommer
, and N. D.
Danielson
, “Cost-effective spectroscopic instrumentation for the physical chemistry laboratory
,” J. Chem. Educ.
79
, 1264
–1266
(2002
).11.
R.
Voor
, L.
Chow
, and A.
Schulte
, “Micro-Raman spectroscopy in the undergraduate research laboratory
,” Am. J. Phys.
62
, 429
–434
(1994
).12.
T. R.
Gilson
and P. J.
Hendra
, Laser Raman Spectroscopy
(Wiley
, London
, 1970
), pp. 9
–12
.13.
M. S.
Dresselhaus
, G.
Dresselhaus
, and A.
Jorio
, Group Theory: Application to the Physics of Condensed Matter
(Springer-Verlag
, Berlin
, 2008
), pp. 164
–165
.14.
K.
Nakamoto
, Infrared and Raman Spectra of Inorganic and Coordination Compounds
, 4th ed. (Wiley
, New York
, 1986
), pp. 12
–17
.15.
Sulfur isotope data are from The Berkeley Laboratory Isotopes Project, ⟨ie.lbl.gov/education/parent/S_iso.htm⟩.
16.
W. S.
Li
, Z. X.
Shen
, Z. C.
Feng
, and S. J.
Chua
, “Temperature dependence of Raman scattering in hexagonal gallium nitride films
,” J. Appl. Phys.
87
, 3332
–3337
(2000
).17.
K. A.
Alim
, V. A.
Fonobeov
, and A. A.
Balandin
, “Origin of the optical phonon frequency shifts in ZnO quantum dots
,” Appl. Phys. Lett.
86
, 053103
–1
(2005
).18.
A. B. F.
Duncan
and A.
Weissberger
, Technique of Organic Chemistry
(Interscience
, New York
, 1944
), Vol. 9
, p. 198
.19.
C.
Kittel
, Introduction to Solid State Physics
, 7th ed. (Wiley
, New York
, 1996
), pp. 117
–118
.20.
M.
Balkanski
, R. F.
Wallis
, and E.
Haro
, “Anharmonic effects in light scattering due to optical phonons in silicon
,” Phys. Rev. B
28
, 1928
–1934
(1983
).21.
D.
Wang
, M.
Park
, Y. N.
Saripalli
, M. A. L.
Johnson
, C.
Zeng
, D. W.
Barlage
, and J. P.
Long
, “Optical spectroscopic analysis of selected area epitaxially re-grown GaN
,” J. Appl. Phys.
99
, 123106
–1
(2006
).22.
Practical Raman Spectroscopy
, edited by D. J.
Gardiner
and P. R.
Graves
(Springer-Verlag
, Berlin
, 1989
), p. 27
.23.
R. L.
McCreery
, Raman Spectroscopy for Chemical Analysis
(Wiley
, New York
, 2000
), pp. 108
–109
.24.
E. B.
Wilson
, Jr., J. C.
Decius
, and P. C.
Cross
, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
, revised edition (Dover
, New York
, 1980
), pp. 177
–178
.25.
S.
Ikawa
and E.
Whalley
, “Polarized and depolarized Raman spectra of liquid carbon disulfide at 0–10 kbar. 3. Interaction-induced and scattering and the fluctuation of the local field
,” J. Phys. Chem.
94
, 7834
–7839
(1990
).26.
J. C.
Evans
and H. J.
Bernstein
, “Intensity in the Raman effect. V. The effect of intermolecular interaction on the Raman spectrum of carbon disulfide
,” Can. J. Chem.
34
, 1127
–1133
(1956
).© 2009 American Association of Physics Teachers.
2009
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.