An alternative derivation of the first-order relativistic contribution to perihelic precession is presented. Orbital motion in the Schwarzschild geometry is considered in the Keplerian limit, and the orbit equation is derived for approximate elliptical motion. The method of solution makes use of coordinate transformations and the correspondence principle rather than the standard perturbative approach. The form of the resulting orbit equation is similar to that derived from Newtonian mechanics and includes first-order corrections to Kepler’s orbits due to general relativity. The associated relativistic contribution to perihelic precession agrees with established first-order results. The reduced radius for the circular orbit is in agreement to first-order with that calculated from the Schwarzschild effective potential. The method of solution is understandable by undergraduate students.

1.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
San Francisco
,
1973
), pp.
1110
1115
.
2.
S.
Weinberg
,
Gravitation and Cosmology
(
Wiley
,
New York
,
1972
), pp.
194
201
.
3.
W.
Rindler
,
Relativity: Special, General, and Cosmological
(
Oxford U. P.
,
New York
,
2001
), pp.
238
245
.
4.
J.
Plebański
and
A.
Krasiński
,
An Introduction to General Relativity and Cosmology
(
Cambridge U. P.
,
Cambridge
,
2006
), pp.
176
182
.
5.
H.
Ohanian
and
R.
Ruffini
,
Gravitation and Spacetime
(
W. W. Norton & Company
,
New York
,
1994
), pp.
401
408
.
6.
R.
D’Inverno
,
Introducing Einstein’s Relativity
(
Oxford U. P.
,
New York
,
1995
), pp.
195
198
.
7.
J. B.
Hartle
,
Gravity: An Introduction to Einstein’s General Relativity
(
Addison-Wesley
,
San Francisco
,
2003
), pp.
191
204
.
8.
S. M.
Carroll
,
An Introduction to General Relativity: Spacetime and Geometry
(
Addison-Wesley
,
San Francisco
,
2004
), pp.
205
216
.
9.
M. P.
Hobson
,
G. P.
Efstathiou
, and
A. N.
Lasenby
,
General Relativity: An Introduction for Physicists
(
Cambridge U. P.
,
Cambridge
,
2006
), pp.
205
216
,
230
233
.
10.
R. M.
Wald
,
General Relativity
(
U. of Chicago Press
,
Chicago
,
1984
), pp.
136
143
.
11.
A.
Einstein
, “
Erklärung der perihelbewegung des Merkur aus der allgemeinen relativitätstheorie
,”
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)
1915
,
831
839
(
1915
).
12.
A.
Einstein
, “
Explanation of the perihelion motion of mercury from the general theory of relativity
,” in
The Collected Papers of Albert Einstein
, translated by A. Engel (
Princeton U. P.
,
Princeton
,
1997
), Vol.
6
, pp.
112
116
. This article is the English translation of Ref. 11.
13.
A.
Einstein
, “
Die grundlage der allgemeinen relativitätstheorie; von A. Einstein
,”
Ann. Phys.
354
(
7
),
769
822
(
1916
).
14.
Reference 12, pp.
146
200
. This article is the English translation of Ref. 13.
15.
G.
Ovanesyan
, “
Derivation of relativistic corrections to bounded and unbounded motion in a weak gravitational field by integrating the equations of motion
,”
Am. J. Phys.
71
(
9
),
912
916
(
2003
).
16.
A.
Schild
, “
Equivalence principle and red-shift measurements
,”
Am. J. Phys.
28
(
9
),
778
780
(
1960
).
17.
F. Y.-H.
,
Wang
, “
Relativistic orbits with computer algebra
,”
Am. J. Phys.
72
(
8
),
1040
1044
(
2004
).
18.
K.
Schwarzschild
, “
Über das gravitationsfeld eines massenpunktes nach der Einsteinschen theorie
,”
Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.
1916
,
189
196
(
1916
);
Reprinted in translation as “
On the gravitational field of a mass point according to Einstein’s theory
,” e-print arXiv:physics/9905030v1.
19.
J.
Droste
, “
Het veld van een enkel centrum in Einstein’s theorie der zwaartekracht, en de beweging van een stoffelijk punt in dat veld
,”
Verh. K. Akad. Wet. Amsterdam, Afd. Natuurkd.
25
,
163
180
(
1916
);
J.
Droste
, “Reprinted in translation as “
The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field
,”
Proc. K. Ned. Akad. Wet.
19
(
1
),
197
215
(
1917
) <adsabs.harvard.edu/abs/1917KNAB...19.197D>.
20.
J. B.
Marion
and
S. T.
Thornton
,
Classical Dynamics of Particles and Systems
(
Harcourt Brace Jovanovich
,
San Diego
,
1988
), pp.
256
260
.
21.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison- Wesley
,
San Francisco
,
2002
), pp.
92
96
.
22.
P.
Smith
and
R. C.
Smith
,
Mechanics
(
Wiley
,
Chichester
,
1990
), pp.
195
202
.
23.
D. R.
Stump
, “
Precession of the perihelion of Mercury
,”
Am. J. Phys.
56
(
12
),
1097
1098
(
1988
).
24.
A. M.
Nobili
and
I. W.
Roxburgh
, “
Simulation of general relativistic corrections in long term numerical integrations of planetary orbits
,” in
Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Thoeries and Observational Verifications
, edited by
J.
Kovalevsky
and
V. A.
Brumberg
(
IAU
,
Dordrecht
,
1986
), pp.
105
110
<adsabs.harvard.edu/abs/1986IAUS.114.105N>.
25.
C.
Magnan
, “
Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in general relativity
,” e-print arXiv:0712.3709v1.
26.
M. M.
D’Eliseo
, “
The first-order orbital equation
,”
Am. J. Phys.
75
(
4
),
352
355
(
2007
).
27.
D. R.
Brill
and
D.
Goel
, “
Light bending and perihelion precession: A unified approach
,”
Am. J. Phys.
67
(
4
),
316
319
(
1999
).
28.
B.
Dean
, “
Phase-plane analysis of perihelion precession and Schwarzschild orbital dynamics
,”
Am. J. Phys.
67
(
1
),
78
86
(
1999
).
29.
N.
Ashby
, “
Planetary perturbation equations based on relativistic Keplerian motion
,” in
Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Thoeries and Observational Verifications
, edited by
J.
Kovalevsky
and
V. A.
Brumberg
(
IAU
,
Dordrecht
,
1986
), pp.
41
52
<adsabs.harvard.edu/abs/1986IAUS.114...41A>.
30.
Reference 7, pp.
230
232
.
31.
M. G.
Stewart
, “
Precession of the perihelion of Mercury’s orbit
,”
Am. J. Phys.
73
(
8
),
730
734
(
2005
).
32.
D.
Brouwer
and
G. M.
Clemence
, in
The Solar System: Planets and Satellites
, edited by
G. P.
Kuiper
and
B. M.
Middlehurst
(
U. of Chicago Press
,
Chicago
,
1961
), Vol.
III
, pp.
31
94
.
33.
C.
Sigismondi
, “
Astrometry and relativity
,”
Nuovo Cimento Soc. Ital. Fis., B
120
,
1169
1180
(
2005
).
34.
The algebra is included here for completeness and is taken almost verbatim from the very clear presentations of Refs. 4 and 8.
35.
Reference 1, pp.
660
662
, Box 25.6.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.