Bertrand’s theorem is formulated as the solution of an inverse problem for classical one-dimensional motion. We show that the solutions of this problem, if suitably restricted, can be obtained by solving an elementary equation. This approach provides a compact and elegant proof of Bertrand’s theorem.

1.
V. I.
Arnold
,
Huygens and Barrow, Newton and Hooke
(
Birkhäuser
,
Basel
,
1990
).
2.
A. L.
Salas-Brito
,
H. N.
Núñez-Yépez
and
R. P.
Màrtinez-y-Romero
, “
Superintegrability in classical mechanics: A contemporary approach to Bertrand’s theorem
,”
Int. J. Mod. Phys. A
12
,
271
276
(
1997
).
3.
R. P.
Màrtinez-y-Romero
,
H. N.
Núñez-Yépez
, and
A. L.
Salas-Brito
, “
Closed orbits and constants of motion in classical mechanics
,”
Eur. J. Phys.
13
,
26
31
(
1992
).
4.
L. S.
Brown
, “
Forces giving no orbit precession
,”
Am. J. Phys.
46
,
930
931
(
1978
).
5.
H.
Goldstein
,
C. P.
Poole
, and
J. L.
Safko
,
Classical Mechanics
(
Addison–Wesley
,
New York
,
2001
).
6.
J.
Féjoz
and
L.
Kaczmarek
, “
Sur le théorème de Bertrand (d’après M. Herman)
,”
Ergod. Theory Dyn. Syst.
24
,
1
7
(
2004
).
7.
Y.
Zarmi
, “
The Bertrand theorem revisited
,”
Am. J. Phys.
70
,
446
449
(
2002
).
8.
Y.
Tikochinsky
, “
A simplified proof of Bertrand’s theorem
,”
Am. J. Phys.
56
,
1073
1075
(
1988
).
9.
J.
Bertrand
, “
Théorème relatif au mouvement d’un point attiré vers un centre fixe
,”
C. R. Acad. Sci.
77
,
849
853
(
1873
).
10.
D. F.
Greenberg
, “
Accidental degeneracy
,”
Am. J. Phys.
34
,
1101
1109
(
1966
).
11.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer-Verlag
,
New York
,
1978
).
12.
E.
Onofri
and
M.
Pauri
, “
Search for periodic Hamiltonian flows: A generalized Bertrand’s theorem
,”
J. Math. Phys.
19
(
9
),
1850
1858
(
1978
).
13.
L. D.
Landau
and
M.
Lifshitz
,
Mechanics
(
Pergamon
,
Oxford
,
1960
).
14.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(
Cambridge U.P
,
New York
,
1993
).
15.
V. I.
Arnold
,
V. V.
Kozlov
, and
A. I.
Neistadt
,
Mathematical Aspects of Classical and Celestial Mechanics
(
Springer-Verlag
,
New York
,
1997
).
16.
J.
Lelong-Ferrand
and
J. M.
Arnaudiès
,
Géométrie et Cinématique
, (
Dunod
,
Paris
,
1977
).
17.
F. G.
Tricomi
,
Integral Equations
(
Dover
,
New York
,
1985
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.