Bertrand’s theorem is formulated as the solution of an inverse problem for classical one-dimensional motion. We show that the solutions of this problem, if suitably restricted, can be obtained by solving an elementary equation. This approach provides a compact and elegant proof of Bertrand’s theorem.
REFERENCES
1.
V. I.
Arnold
, Huygens and Barrow, Newton and Hooke
(Birkhäuser
, Basel
, 1990
).2.
A. L.
Salas-Brito
, H. N.
Núñez-Yépez
and R. P.
Màrtinez-y-Romero
, “Superintegrability in classical mechanics: A contemporary approach to Bertrand’s theorem
,” Int. J. Mod. Phys. A
12
, 271
–276
(1997
).3.
R. P.
Màrtinez-y-Romero
, H. N.
Núñez-Yépez
, and A. L.
Salas-Brito
, “Closed orbits and constants of motion in classical mechanics
,” Eur. J. Phys.
13
, 26
–31
(1992
).4.
L. S.
Brown
, “Forces giving no orbit precession
,” Am. J. Phys.
46
, 930
–931
(1978
).5.
H.
Goldstein
, C. P.
Poole
, and J. L.
Safko
, Classical Mechanics
(Addison–Wesley
, New York
, 2001
).6.
J.
Féjoz
and L.
Kaczmarek
, “Sur le théorème de Bertrand (d’après M. Herman)
,” Ergod. Theory Dyn. Syst.
24
, 1
–7
(2004
).7.
Y.
Zarmi
, “The Bertrand theorem revisited
,” Am. J. Phys.
70
, 446
–449
(2002
).8.
Y.
Tikochinsky
, “A simplified proof of Bertrand’s theorem
,” Am. J. Phys.
56
, 1073
–1075
(1988
).9.
J.
Bertrand
, “Théorème relatif au mouvement d’un point attiré vers un centre fixe
,” C. R. Acad. Sci.
77
, 849
–853
(1873
).10.
D. F.
Greenberg
, “Accidental degeneracy
,” Am. J. Phys.
34
, 1101
–1109
(1966
).11.
V. I.
Arnold
, Mathematical Methods of Classical Mechanics
(Springer-Verlag
, New York
, 1978
).12.
E.
Onofri
and M.
Pauri
, “Search for periodic Hamiltonian flows: A generalized Bertrand’s theorem
,” J. Math. Phys.
19
(9
), 1850
–1858
(1978
).13.
14.
E. T.
Whittaker
, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(Cambridge U.P
, New York
, 1993
).15.
V. I.
Arnold
, V. V.
Kozlov
, and A. I.
Neistadt
, Mathematical Aspects of Classical and Celestial Mechanics
(Springer-Verlag
, New York
, 1997
).16.
J.
Lelong-Ferrand
and J. M.
Arnaudiès
, Géométrie et Cinématique
, (Dunod
, Paris
, 1977
).17.
© 2008 American Association of Physics Teachers.
2008
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.