The nature of a quantum computer is described in the concrete context of a quantum simulator of the single-particle Schrödinger equation. We show that a register of 6–10 qubits is sufficient to realize a useful quantum simulator capable of efficiently solving standard quantum mechanical problems.

1.
G.
Benenti
,
G.
Casati
, and
G.
Strini
,
Principles of Quantum Computation and Information
, Vol. I: Basic Concepts (
World Scientific
, Singapore,
2004
);
G.
Benenti
,
G.
Casati
, and
G.
Strini
,
Principles of Quantum Computation and Information, Vol. II: Basic Tools and Special Topics
(
World Scientific
, Singapore,
2007
).
2.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge U. P.
, Cambridge,
2000
).
3.
E.
Gerjuoy
, “
Shor’s factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers
,”
Am. J. Phys.
73
,
521
540
(
2005
).
4.
L. K.
Grover
, “
From Schrödinger equation to the quantum search algorithm
,”
Am. J. Phys.
69
,
769
777
(
2001
).
5.
J.
Zhang
and
Z.
Lu
, “
Similarity between Grover’s quantum search algorithm and classical two-body collisions
,”
Am. J. Phys.
71
,
83
86
(
2003
).
6.
T. F.
Havel
,
D. G.
Cory
,
S.
Lloyd
,
N.
Boulant
,
E. M.
Fortunato
,
M. A.
Pravia
,
G.
Teklemarian
,
Y. S.
Weinstein
,
A.
Bhattacharyya
, and
J.
Hou
, “
Quantum information processing by nuclear magnetic resonance spectroscopy
,”
Am. J. Phys.
70
,
345
362
(
2002
).
7.
J.
Skaar
,
J. C. G.
Escartín
, and
H.
Landro
, “
Quantum mechanical description of linear optics
,”
Am. J. Phys.
72
,
1385
1391
(
2004
).
8.
J. I.
Cirac
and
P.
Zoller
, “
New frontiers in quantum information with atoms and ions
,”
Phys. Today
57
(
3
),
38
44
(
2004
).
9.
J. Q.
You
and
F.
Nori
, “
Superconducting circuits and quantum information
,”
Phys. Today
58
(
11
),
42
47
(
2005
).
10.
H. E.
Brandt
, “
Positive operator valued measure in quantum information processing
,”
Am. J. Phys.
67
,
434
439
(
1999
).
11.
G. W.
Ford
and
R. F.
O’Connell
, “
Wave packet spreading: Temperature and squeezing effects with applications to quantum measurement and decoherence
,”
Am. J. Phys.
70
,
319
324
(
2002
).
12.
J.
Preskill
, “
Battling decoherence: The fault-tolerant quantum computer
,”
Phys. Today
52
(
6
),
24
30
(
1999
).
13.
P. W.
Shor
, “
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
26
,
1484
1509
(
1997
).
14.
L. K.
Grover
, “
Quantum mechanics helps in searching for a needle in a haystack
,”
Phys. Rev. Lett.
79
,
325
328
(
1997
).
15.
R. P.
Feynman
, “
Simulating physics with computers
,”
Int. J. Theor. Phys.
21
,
467
488
(
1982
).
16.
S.
Wiesner
, “
Simulation of many-body quantum systems by a quantum computer
,” quant-ph/9603028.
17.
C.
Zalka
, “
Efficient simulation of quantum systems by quantum computers
,”
Fortschr. Phys.
46
,
877
879
(
1998
).
18.
G.
Strini
, “
Error sensitivity of a quantum simulator I: A first example
,”
Fortschr. Phys.
50
,
171
183
(
2002
).
19.
S. A.
Gardiner
,
J. I.
Cirac
, and
P.
Zoller
, “
Quantum chaos in an ion trap: The delta-kicked harmonic oscillator
,”
Phys. Rev. Lett.
79
,
4790
4793
(
1997
).
20.
N.
Byers
and
C. N.
Yang
, “
Theoretical considerations concerning quantized magnetic flux in superconducting cylinders
,”
Phys. Rev. Lett.
7
,
46
49
(
1961
).
21.
B. S.
Shastry
and
B.
Sutherland
, “
Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard rings
,”
Phys. Rev. Lett.
65
,
243
246
(
1990
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.