We present a lesser known way to conceptualize stationary black holes, which we call the river model. In this model, space flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. The river model also works for rotating (Kerr–Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, but falls inward with no azimuthal swirl. The river has at each point not only a velocity but also a rotation or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point and encapsulates all the properties of a stationary rotating black hole.

1.
A.
Gullstrand
, “
Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie” (“General solution of the static body problem in Einstein’s gravitation theory”)
,”
Ark. Mat., Astron. Fys.
16
(
8
),
1
15
(
1922
).
2.
P.
Painlevé
, “
La mécanique classique et la théorie de la relativité
,”
173
,
677
680
(
1921
).
3.
K.
Schwarzschild
, “
Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie
,”
Sitzungsberichte der Deutschen Akademie der Wissencshaften zu Berlin, Klasse für Mathematik, Physik, und Technik
1
,
189
196
(
1916
).
For an English translation see “
On the gravitational field of a mass point according to Einstein’s theory
,”
Gen. Relativ. Gravit.
35
,
951
959
(
2003
).
4.
T.
Rothman
, “
Editor’s note: The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field
,”
Gen. Relativ. Gravit.
34
,
1541
1543
(
2002
) comments that the Schwarzschild metric was discovered independently by Johannes Droste in 1916.
5.
Tanmay
Vachaspati
, “
Cosmic problems for condensed matter experiment
,”
J. Low Temp. Phys.
136
,
361
377
(
2004
).
6.
J.
Michell
, “
On the means of discovering the distance, magnitude, etc., of the fixed stars, in consequence of the diminution of their light, in case such a diminution should be found to take place in any of the them, and such other data should be procured from observations, as would be futher necessary for that purpose
,”
Philos. Trans. R. Soc. London
74
,
35
57
(
1784
).
7.
P.-S.
Laplace
, “
Proof of the theorem, that the attractive force of a heavenly body could be so large, that light could not flow out of it
,” in
Allgemeine Geographische Ephemeriden, verfasset von Einer Gesellschaft Gelehrten, 8vo Weimer, IV, I. Bd St
, edited by
F. X.
von Zach
(
1799
); An English translation is in Stephen W. Hawking and George F. R. Ellis,
The Large Scale Structure of Space-Time
(
Cambridge University Press
, Cambridge, 1973), Appendix  A.
8.
B.
Greene
,
The Fabric of the Cosmos: Space, Time, and the Texture of Reality
(
A. A. Knopf
, New York,
2004
), p.
237
.
9.
M.
Visser
, “
Acoustic black holes: Horizons, ergospheres, and Hawking radiation
,”
Class. Quantum Grav.
15
,
1767
1791
(
1998
).
10.
M.
Visser
, “
Heuristic approach to the Schwarzschild geometry
,”
Int. J. Mod. Phys. D
14
,
2051
2068
(
2005
).
11.
K.
Martel
and
E.
Poisson
, “
Regular coordinate systems for Schwarzschild and other spherical spacetimes
,”
Am. J. Phys.
69
,
476
480
(
2001
).
12.
W.
Laschkarew
, “
Zure Theorie der Gravitation
,”
Z. Phys.
35
,
473
476
(
1926
). A translation by babelfish.altavista.com/tr of the abstract is “The Einstein equivalence principle can be satisfied from the point of view of an aether theory, if one permits accelerated aether currents. All consequences of the Einstein theory of gravitation are derived in an elementary way by connection of the theory of special relativity with the above hypothesis.”
13.
G.
Lemaître
, “
L’univers en expansion
,”
Ann. Soc. Sci. (Bruxelles) A
53
,
51
85
(
1933
).
14.
A.
Trautman
, “
Comparison of Newtonian and relativistic theories of space-time
,” in
Perspectives in Geometry and Relativity; Essays in Honor of Václav Hlavatý
, edited by
B.
Hoffmann
(
Indiana University Press
, Bloomington,
1966
), pp.
413
425
.
15.
H. P.
Robertson
and
Thomas W.
Noonan
,
Relativity and Cosmology
(
Saunders
1968
).
16.
F.
Estabrook
,
H.
Wahlquist
,
S.
Christensen
,
B.
DeWitt
,
L.
Smarr
, and
E.
Tsiang
, “
Maximally slicing a black hole
,”
Phys. Rev. D
7
,
2814
2817
(
1973
).
17.
R.
Gautreau
and
B.
Hoffmann
, “
The Schwarzschild radial coordinate as a measure of proper distance
,”
Phys. Rev. D
17
,
2552
2555
(
1978
).
18.
R.
Gautreau
, “
Light cones inside the Schwarzschild radius
,”
Am. J. Phys.
63
,
431
439
(
1995
).
19.
P.
Kraus
and
F.
Wilczek
, “
A simple stationary line element for the Schwarzschild geometry, and some applications
,”
Mod. Phys. Lett. A
9
,
3713
3719
(
1994
).
20.
K.
Lake
, “
A Class of quasistationary regular line elements for the Schwarzschild geometry
,” gr-qc/9407005.
21.
A.
Lasenby
,
C.
Doran
, and
S.
Gull
, “
Gravity, gauge theories and geometric algebra
,”
Philos. Trans. R. Soc. London, Ser. A
356
,
487
582
(
1998
).
22.
P.
Nurowski
,
E.
Schucking
, and
A.
Trautman
, “
Relativistic gravitational fields with close Newtonian analogs
,” in
On Einstein’s Path: Essays in Honor of Engelbert Schucking
, edited by
Alex
Harvey
(
Springer
, New York,
1999
), pp.
329
337
.
23.
J.
Czerniawski
, “
What is wrong with Schwarzschild’s coordinates?
,”
Concepts Phys.
3
,
307
318
(
2006
).
24.
E. F.
Taylor
and
J. A.
Wheeler
,
Exploring Black Holes: Introduction to General Relativity
(
, San Francisco,
2000
).
25.
K. S.
Thorne
,
R. H.
Price
, and
D. A.
MacDonald
,
(
Yale University Press
, New Haven,
1986
).
26.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
The dynamics of general relativity
,” in
Gravitation, An Introduction to Current Research
, edited by
Louis
Witten
(
Wiley
, New York,
1962
), pp.
227
265
.
27.
L.
Lehner
, “
Numerical relativity: A review
,”
Class. Quantum Grav.
18
,
R25
86
(
2001
).
28.
M.
Alcubierre
, “
The warp drive: Hyper-fast travel within general relativity
,”
Class. Quantum Grav.
11
,
L73
L79
(
1994
).
29.
F. S. N.
Lobo
and
M.
Visser
, “
Fundamental limitations on ‘warp drive’ spacetimes
,”
Class. Quantum Grav.
21
,
5871
5892
(
2004
).
30.
W. G.
Unruh
, “
Experimental black hole evaporation
,”
Phys. Rev. D
14
,
1351
1353
(
1981
).
31.
C.
Barceló
,
S.
Liberati
, and
M.
Visser
, “
Analogue gravity
,”
Living Rev. Relativ.
8
,
12
(
2005
),$⟨$www.livingreviews.org/Irr-2005-12$⟩$.
32.
J.
Natário
, “
Newtonian limits of warp drive spacetimes
,”
Gen. Rel. Grav.
38
,
475
484
(
2006
).
33.
M.
Visser
and
S. E. Ch.
Weinfurtner
, “
Vortex analogue for the equatorial geometry of the Kerr black hole
,”
Class. Quantum Grav.
22
,
2493
2510
(
2005
).
34.
A.
Garat
and
R. H.
Price
, “
Nonexistence of conformally flat slices of the Kerr spacetime
,”
Phys. Rev. D
61
,
124011
1
(
2000
).
35.
J. A.
Valiente Kroon
, “
Nonexistence of conformally flat slices in Kerr and other stationary spacetimes
,”
Phys. Rev. Lett.
92
,
041101
1
(
2004
).
36.
C.
Doran
, “
A new form of the Kerr solution
,”
Phys. Rev. D
61
,
067503
1
(
2000
).
37.
G. B.
Cook
, “
Initial data for numerical relativity
,”
Living Rev. Relativ.
3
, 2000-5 (
2000
).
38.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
, New York,
1973
).
39.
C. W.
Misner
and
D. H.
Sharp
, “
Relativistic equations for adiabatic, spherically symmetric gravitational collapse
,”
Phys. Rev.
136
,
B571
B576
(
1964
).
40.
S.
Weinberg
,
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(
Wiley
, New York,
1972
), p.
300
.
41.
R.
Penrose
, “
Structure of space-time
,” in
Battelle Rencontres: 1967 Lectures in Mathematics and Physics
, edited by
C. M.
de Witt
and
J. A.
Wheeler
(
W. A. Benjamin
, New York,
1968
), pp.
121
235
.
42.
E.
Poisson
and
W.
Israel
, “
Internal structure of black holes
,”
Phys. Rev. D
41
,
1796
1809
(
1990
).
43.
A. J. S.
Hamilton
and
S. E.
Pollack
, “
Inside charged black holes I. Baryons
,”
Phys. Rev. D
71
,
084031
1
(
2005
);
A. J. S.
Hamilton
and
S. E.
Pollack
, “
Inside charged black holes II. Baryons plus dark matter
,”
Phys. Rev. D
084032
1
(
2005
).
44.
S.
Gull
,
A.
Lasenby
, and
C.
Doran
, “
Imaginary numbers are not real – the geometric algebra of spacetime
,”
Found. Phys.
23
,
1175
1201
(
1993
),$⟨$www.ucl.ac.uk/~ucesjph/reality/ga/intro.html$⟩$;
C.
Doran
and
A.
Lasenby
,
Geometric Algebra for Physicists
(
Cambridge University Press
, Cambridge,
2003
).
45.
R. H.
Boyer
and
R. W.
Lindquist
, “
Maximal analytic extension of the Kerr metric
,”
J. Math. Phys.
8
,
265
281
(
1967
).
46.
A local gauge transformation is a Lorentz transformation that varies from place to place.