I review three socio-economic models of economic opinions, urban segregation, and language change and show that the well-known two-dimensional Ising model gives about the same results in each case.
REFERENCES
1.
D. P.
Landau
and K.
Binder
, A Guide to Monte Carlo Simulations in Statistical Physics
(Cambridge University Press
, Cambridge, 2005
), 2nd ed.2.
More information on the Ifo index (Information & Forschung at Munich University) can be found at www.ifo.de.
3.
M.
Hohnisch
, S.
Pittnauer
, S.
Solomon
, and D.
Stauffer
, “Socioeconomic interaction and swings in business confidence indicators
,” Physica A
345
, 646
–656
(2005
).4.
5.
C.
Schulze
, D.
Stauffer
, and S.
Wichmann
, “Birth, survival and death of languages by Monte Carlo simulation
,” Comm. Comput. Phys. 3
, 271
–294
(2007
).6.
W.
Weidlich
, Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences
(Gordon and Breach
, London, 2000
).7.
M.
Hohnisch
, D.
Stauffer
, and S.
Pittnauer
, “The impact of external events on the emergence of social herding of economic sentiment
,” arXiv:physics/0606237.8.
J.
Baumert
et al, “Teacher education in Northrhine-Westphalia
” (in German), Ministerium für Innovation, Wissenschaft, Forschung und Technologie, Düsseldorf, April 2007
.9.
T. C.
Schelling
, “Dynamic models of segregation
,” J. Math. Sociol.
1
, 143
–186
(1971
).10.
D.
Vinkovic
and A.
Kirman
, “A physical analogue of the Schelling model
,” Proc. R. Soc. London, Ser. A
103
, 19261
–19265
(2006
).11.
M.
Fossett
, “Ethnic preferences, social distance dynamics, and residential segregation: Theoretical explorations using simulation analysis
,” J. Math. Sociol.
30
, 185
–274
(2006
).12.
F. L.
Jones
, “Simulation models of group segregation
,” Aust. NZ. J. Sociol.
21
, 431
–444
(1985
).13.
H.
Levy
, M.
Levy
, and S.
Solomon
, Microscopic Simulation of Financial Markets
(Academic
, New York, 2000
).14.
J.
Mimkes
, “Binary alloys as a model for the multicultural society
,” J. Therm. Anal.
43
, 521
–537
(1996
).15.
H.
Meyer-Ortmanns
, “Immigration, integration and ghetto formation
,” Int. J. Mod. Phys. C
14
, 311
–320
(2003
);C.
Schulze
, “Potts-like model for ghetto formation in multi-cultural societies
,” Int. J. Mod. Phys. C
16
, 351
–356
(2003
).16.
D.
Stauffer
and S.
Solomon
, “Ising, Schelling and self-organising segregation
,” Eur. J. Phys. B
57
, 473
–479
(2007
).K.
Müller
, C.
Schulze
, and D.
Stauffer
, “Inhomogeneous and self-organised temperature in Schelling-Ising model
,” Int. J. Mod. Phys. C
19
, in press (2008
).17.
E. G.
Altmann
, S.
Hallerberg
, and H.
Kantz
, “Reactions to extreme events: Moving threshold model
,” Physica A
364
, 435
–444
(2006
).18.
H.
Meyer-Ortmanns
and T.
Trappenberg
, “Surface tension from finite-volume vacuum tunneling in the 3D Ising model
,” J. Stat. Phys.
58
, 185
–198
(1990
).19.
B.
Latané
, “The psychology of social impact
,” Am. Psychol.
36
, 343
–365
(1981
).20.
J.
Ke
, T.
Gong
, and W. S-Y.
Wang
, “Language change and social networks
,” Int. J. Mod. Phys. C
19
, in press (2008
).21.
S.
Wichmann
, D.
Stauffer
, C.
Schulze
, and E. W.
Holman
, “Do language change rates depend on population size?
,” arXiv: 0706.1842.22.
M.
Blume
, “Theory of first-order magnetic phase change in
,” Phys. Rev.
141
, 517
–525
(1966
);H. W.
Capel
, “On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting
,” Physica (Amsterdam)
32
, 96
–106
(1966
).23.
F. Y.
Wu
, “The Potts model
,” Rev. Mod. Phys.
54
, 235
–268
(1982
).24.
T. M.
Liggett
, Interacting Particle Systems
(Springer
, New York, 1985
).25.
M. J.
de Oliveira
, “Isotropic majority vote model on a square lattice
,” J. Stat. Phys.
78
, 963
–281
(1995
).© 2008 American Association of Physics Teachers.
2008
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.