I review three socio-economic models of economic opinions, urban segregation, and language change and show that the well-known two-dimensional Ising model gives about the same results in each case.

1.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
, Cambridge,
2005
), 2nd ed.
2.
More information on the Ifo index (Information & Forschung at Munich University) can be found at www.ifo.de.
3.
M.
Hohnisch
,
S.
Pittnauer
,
S.
Solomon
, and
D.
Stauffer
, “
Socioeconomic interaction and swings in business confidence indicators
,”
Physica A
345
,
646
656
(
2005
).
4.
D.
Nettle
, “
Is the rate of linguistic change constant?
,”
Lingua
18
,
119
136
(
1999
).
5.
C.
Schulze
,
D.
Stauffer
, and
S.
Wichmann
, “
Birth, survival and death of languages by Monte Carlo simulation
,” Comm. Comput. Phys.
3
,
271
294
(
2007
).
6.
W.
Weidlich
,
Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences
(
Gordon and Breach
, London,
2000
).
7.
M.
Hohnisch
,
D.
Stauffer
, and
S.
Pittnauer
, “
The impact of external events on the emergence of social herding of economic sentiment
,” arXiv:physics/0606237.
8.
J.
Baumert
 et al, “
Teacher education in Northrhine-Westphalia
” (in German), Ministerium für Innovation, Wissenschaft, Forschung und Technologie, Düsseldorf,
April 2007
.
9.
T. C.
Schelling
, “
Dynamic models of segregation
,”
J. Math. Sociol.
1
,
143
186
(
1971
).
10.
D.
Vinkovic
and
A.
Kirman
, “
A physical analogue of the Schelling model
,”
Proc. R. Soc. London, Ser. A
103
,
19261
19265
(
2006
).
11.
M.
Fossett
, “
Ethnic preferences, social distance dynamics, and residential segregation: Theoretical explorations using simulation analysis
,”
J. Math. Sociol.
30
,
185
274
(
2006
).
12.
F. L.
Jones
, “
Simulation models of group segregation
,”
Aust. NZ. J. Sociol.
21
,
431
444
(
1985
).
13.
H.
Levy
,
M.
Levy
, and
S.
Solomon
,
Microscopic Simulation of Financial Markets
(
Academic
, New York,
2000
).
14.
J.
Mimkes
, “
Binary alloys as a model for the multicultural society
,”
J. Therm. Anal.
43
,
521
537
(
1996
).
15.
H.
Meyer-Ortmanns
, “
Immigration, integration and ghetto formation
,”
Int. J. Mod. Phys. C
14
,
311
320
(
2003
);
C.
Schulze
, “
Potts-like model for ghetto formation in multi-cultural societies
,”
Int. J. Mod. Phys. C
16
,
351
356
(
2003
).
16.
D.
Stauffer
and
S.
Solomon
, “
Ising, Schelling and self-organising segregation
,”
Eur. J. Phys. B
57
,
473
479
(
2007
).
K.
Müller
,
C.
Schulze
, and
D.
Stauffer
, “
Inhomogeneous and self-organised temperature in Schelling-Ising model
,”
Int. J. Mod. Phys. C
19
, in press (
2008
).
17.
E. G.
Altmann
,
S.
Hallerberg
, and
H.
Kantz
, “
Reactions to extreme events: Moving threshold model
,”
Physica A
364
,
435
444
(
2006
).
18.
H.
Meyer-Ortmanns
and
T.
Trappenberg
, “
Surface tension from finite-volume vacuum tunneling in the 3D Ising model
,”
J. Stat. Phys.
58
,
185
198
(
1990
).
19.
B.
Latané
, “
The psychology of social impact
,”
Am. Psychol.
36
,
343
365
(
1981
).
20.
J.
Ke
,
T.
Gong
, and
W. S-Y.
Wang
, “
Language change and social networks
,”
Int. J. Mod. Phys. C
19
, in press (
2008
).
21.
S.
Wichmann
,
D.
Stauffer
,
C.
Schulze
, and
E. W.
Holman
, “
Do language change rates depend on population size?
,” arXiv: 0706.1842.
22.
M.
Blume
, “
Theory of first-order magnetic phase change inUO2
,”
Phys. Rev.
141
,
517
525
(
1966
);
H. W.
Capel
, “
On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting
,”
Physica (Amsterdam)
32
,
96
106
(
1966
).
23.
F. Y.
Wu
, “
The Potts model
,”
Rev. Mod. Phys.
54
,
235
268
(
1982
).
24.
T. M.
Liggett
,
Interacting Particle Systems
(
Springer
, New York,
1985
).
25.
M. J.
de Oliveira
, “
Isotropic majority vote model on a square lattice
,”
J. Stat. Phys.
78
,
963
281
(
1995
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.