Monte Carlo algorithms can provide detailed information about the static properties of magnets and spin dynamics simulations can be used to understand their dynamic properties. We present an introduction to these methods and discuss some simple examples, showing the insights that can be gained.

1.
See for example,
H.
Gould
,
J.
Tobochnik
, and
W.
Christian
,
An Introduction to Computer Simulation Methods: Applications to Physical Systems
(
Addison–Wesley
, San Francisco,
2007
), 3rd ed.
2.
B. A.
Berg
,
Markov Chain Monte Carlo Simulations and Their Statistical Analysis – With Web-Based Fortran Code
(
World Scientific
, NJ,
2004
).
3.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Methods in Statistical Physics
(
Cambridge U.P.
, Cambridge,
2005
).
4.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
5.
R. H.
Swendsen
and
J.-S.
Wang
, “
Nonuniversal critical dynamics in Monte Carlo simulations
,”
Phys. Rev. Lett.
58
,
86
88
(
1987
).
6.
U.
Wolff
, “
Collective Monte Carlo updating for spin systems
,”
Phys. Rev. Lett.
62
,
361
364
(
1989
).
7.
B. A.
Berg
and
T.
Neuhaus
, “
Multicanonical ensemble: A new approach to simulate first-order phase transitions
,”
Phys. Rev. Lett.
68
,
9
12
(
1992
).
8.
W.
Janke
and
S.
Kappler
, “
Multibondic cluster algorithm for Monte Carlo simulations of first-order phase transitions
,”
Phys. Rev. Lett.
74
,
212
215
(
1995
).
9.
B. A.
Berg
,
U.
Hansmann
, and
T.
Neuhaus
, “
Simulation of an ensemble with varying magnetic field: A numerical determination of the order-order interface tension in the D=2 Ising model
,”
Phys. Rev. B
47
,
497
500
(
1993
).
10.
W.
Janke
, “
Multicanonical Monte Carlo simulations
,”
Physica A
254
,
164
178
(
1998
).
11.
B. A.
Berg
, “
Multicanonical simulations step by step
,”
Comput. Phys. Commun.
153
,
397
406
(
2003
).
12.
B. A.
Berg
and
T.
Celik
, “
New approach to spin-glass simulations
,”
Phys. Rev. Lett.
69
,
2292
2295
(
1992
).
13.
N. A.
Alves
and
U. H. E.
Hansmann
, “
Partition function zeros and finite size scaling of helix-coil transitions in a polypeptide
,”
Phys. Rev. Lett.
84
,
1836
1839
(
2000
).
14.
A. M.
Ferrenberg
and
R. H.
Swendsen
, “
New Monte Carlo technique for studying phase transitions
,”
Phys. Rev. Lett.
61
,
2635
2638
(
1988
);
[PubMed]
A. M.
Ferrenberg
and
R. H.
Swendsen
,“
Optimized Monte Carlo data analysis
,”
Phys. Rev. Lett.
63
,
1195
1198
(
1989
).
[PubMed]
15.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
);
[PubMed]
F.
Wang
and
D. P.
Landau
,“
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
,”
Phys. Rev. E
64
,
056101
1
(
2001
).
16.
D. P.
Landau
,
S.-H.
Tsai
, and
M.
Exler
, “
A new approach to Monte Carlo simulations in statistical physics: Wang–Landau sampling
,”
Am. J. Phys.
72
,
1294
1302
(
2004
).
17.
D. P.
Landau
and
R.
Alben
, “
Monte Carlo calculations as an aid in teaching statistical mechanics
,”
Am. J. Phys.
41
,
394
400
(
1973
).
18.
D. P.
Landau
and
M.
Krech
, “
Spin dynamics simulations of classical ferro- and antiferromagnetic model systems: Comparison with theory and experiment
,”
J. Phys. Condens. Matter
11
,
R179
R213
(
1999
).
19.
S.-H.
Tsai
,
H. K.
Lee
, and
D. P.
Landau
, “
Molecular and spin dynamics simulations using modern integration methods
,”
Am. J. Phys.
73
,
615
624
(
2005
).
20.
I. P.
Omelyan
,
I. M.
Mryglod
, and
R.
Folk
, “
Symplectic analytically integrable decomposition algorithms: Classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations
,”
Comput. Phys. Commun.
151
,
272
314
(
2003
).
21.
M.
Krech
,
A.
Bunker
, and
D. P.
Landau
, “
Fast spin dynamics algorithms for classical spin systems
,”
Comput. Phys. Commun.
111
,
1
13
(
1998
).
22.
J.
Frank
,
W.
Huang
, and
B.
Leimkuhler
, “
Geometric integrators for classical spin systems
,”
J. Comput. Phys.
133
,
160
172
(
1997
).
23.
C.
Kittel
and
H.
Kroemer
,
Thermal Physics
(
W. H. Freeman
, San Francisco,
1980
).
24.
B. J.
Schulz
,
K.
Binder
,
M.
Müller
, and
D. P.
Landau
, “
Avoiding boundary effects in Wang–Landau sampling
,”
Phys. Rev. E
67
,
067102
1
(
2003
).
25.
P. D.
Beale
, “
Exact distribution of energies in the two-dimensional Ising model
,”
Phys. Rev. Lett.
76
,
78
81
(
1996
).
26.
D. P.
Landau
, “
Finite-size behavior of the Ising square lattice
,”
Phys. Rev. B
13
,
2997
3011
(
1976
).
27.
L.
Onsager
, “
Crystal statistics. I. A two-dimensional model with an order-disorder transition
,”
Phys. Rev.
65
,
117
149
(
1944
).
28.
See EPAPS Document No. E-AJPIAS-72-006406 for a sample code of the Wang-Landau algorithm for the 2D Ising model. This document may also be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps. See the EPAPS homepage for more information. This code was published as a supplement to Ref. 16.
29.
K.
Chen
,
A. M.
Ferrenberg
, and
D. P.
Landau
, “
Static critical behavior of three-dimensional classical Heisenberg models: A high-resolution Monte Carlo study
,”
Phys. Rev. B
48
,
3249
3256
(
1993
).
30.
K.
Binder
,
K.
Vollmayr
,
H. P.
Deutsch
,
J. D.
Reger
,
M.
Scheucher
, and
D. P.
Landau
, “
Monte Carlo methods for first order phase transitions: Some recent progress
,”
Int. J. Mod. Phys. C
3
,
1025
1058
(
1992
).
31.
M. S. S.
Challa
,
D. P.
Landau
, and
K.
Binder
, “
Finite-size effects at temperature-driven first-order transitions
,”
Phys. Rev. B
34
,
1841
1852
(
1986
).
32.
F. Y.
Wu
, “
The Potts model
,”
Rev. Mod. Phys.
54
,
235
268
(
1982
).
33.
H. B.
Callen
,
Thermodynamics and Introduction to Thermostatistics
(
Wiley
, New York,
1985
), 2nd ed.
34.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
479
(
1977
).
35.
See for example,
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
, New York,
1986
), 6th ed., pp.
430
448
.
36.
See for example
A. H.
Morrish
,
The Physical Principles of Magnetism
(
Wiley
, New York,
1966
), pp.
106
111
.
37.
See for example,
R. L.
Burden
and
J. D.
Faires
,
Numerical Analysis
(
PWS-KENT Publishing
, Boston,
1989
), 4th ed., p.
265
.
38.
L.
Verlet
, “
Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
103
(
1967
).
39.
M.
Suzuki
and
K.
Umeno
, “
Higher-order Decomposition Theory of Exponential Operators and its Applications to QMC and Nonlinear Dynamics
,” in
Computer Simulation Studies in Condensed Matter Physics VI
, edited by
D. P.
Landau
,
K. K.
Mon
, and
H.-B.
Schüttler
(
Springer–Verlag
, Berlin,
1993
), pp.
74
86
.
40.
M.
Suzuki
, “
Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems
,”
Prog. Theor. Phys.
56
,
1454
1469
(
1976
).
41.
M.
Suzuki
,
S.
Miyashita
, and
A.
Kuroda
, “
Monte Carlo simulation of quantum spin systems. I
,”
Prog. Theor. Phys.
58
,
1377
1387
(
1977
).
42.
D. P.
Landau
,
S.-H.
Tsai
,
M.
Krech
, and
A.
Bunker
, “
Improved spin dynamics simulations of magnetic excitations
,”
Int. J. Mod. Phys. C
10
,
1541
1551
(
1999
).
43.
See for example,
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College Publishing
, Philadelphia,
1976
), p.
709
.
44.
See for example,
R.
Coldea
,
R. A.
Cowley
,
T. G.
Perring
,
D. F.
McMorrow
, and
B.
Roessli
, “
Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF3
,”
Phys. Rev. B
57
,
5281
5290
(
1998
).
45.
S.-H.
Tsai
,
A.
Bunker
, and
D. P.
Landau
, “
Spin-dynamics simulations of the magnetic dynamics ofRbMnF3 and direct comparison with experiment
,”
Phys. Rev. B
61
,
333
342
(
2000
);
S.-H.
Tsai
and
D. P.
Landau
, “
Critical dynamics of the simple-cubic Heisenberg antiferromagnet RbMnF3: Extrapolation to q=0
,”
Phys. Rev. B
67
,
104411
1
(
2003
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.