The general relativistic cosmological Friedmann equations, which describe how the scale factor of the universe evolves, are expanded explicitly to include energy forms not usually seen. The evolution of the universe as predicted by the Friedmann equations when dominated by a single, isotropic, stable, static, perfect-fluid energy form is discussed for different values of the gravitational pressure to density ratio w. These energy forms include phantom energy (w<1), cosmological constant (w=1), domain walls (w=23), cosmic strings (w=13), normal matter (w=0), radiation and relativistic matter (w=13), and a previously little-discussed form of energy called “ultralight” (w>13). A brief history and possible futures of Friedmann universes dominated by a single energy form are discussed.

1.
John A.
Peacock
,
Cosmological Physics
(
Cambridge University Press
,
Cambridge
,
1999
).
2.
R.
Caldwell
and
D.
Langlois
, “
Shortcuts in the fifth dimension
,”
Phys. Lett. B
511
,
129
135
(
2001
).
3.
The trajectory of an expanding gravitational horizon is experimentally unknown. See, however,
Robert J.
Nemiroff
, “
Can a gravitational lens magnify gravity? A possible solar system test
,”
Astrophys. J.
628
,
1081
1085
(
2005
).
4.
A.-C.
Davis
,
C.
Rhodes
, and
I.
Vernon
, “
High energy physics-Phenomenology
,”
J. High Energy Phys.
11
,
015
1
(
2001
).
5.
J. T.
Jebsen
,
Ark. Mat., Astron. Fys.
15
, nr.
18
(
1921
).
6.
D. M.
Goldberg
and
M. S.
Vogeley
, “
Simulating voids
,”
Astrophys. J.
605
,
1
6
(
2004
).
7.
C. H.
Lineweaver
,
L.
Tenorio
,
G. F.
Smoot
,
P.
Keegstra
,
A. J.
Banday
, and
P.
Lubin
, “
The dipole observed in the COBE DMR 4year data
,”
Astrophys. J.
470
,
38L
42L
(
1996
).
8.
This result is derived in Problem 19.7 in
Alan P.
Lightman
,
William H.
Press
,
Richard
Price
, and
Saul
Teukolsky
,
Problem Book in Relativity and Cosmology
(
Princeton University Press
,
Princeton
,
1975
).
9.
Adam G.
Riess
 et al, “
Cepheid calibrations from the Hubble space telescope of the luminosity of two recent type Ia supernovae and a redetermination of the Hubble constant
,”
Astrophys. J.
627
,
579
607
(
2005
).
10.
D.
Spergel
 et al, “
First-Year Wilkinson Microwave Anisotropy Probe (WMAP)
,”
Astrophys. J., Suppl. Ser.
148
,
175
194
(
2003
).
11.
M.
Weiss
and
J.
Baez
, “
Is energy conserved in general relativity?
,” Physics and Relativity FAQ, ⟨math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html⟩.
12.
D.
Huterer
and
M.
Turner
, “
Probing dark energy: Methods and strategies
,”
Phys. Rev. D
64
,
123527
1
(
2001
).
13.
Pedro
Gonzalez-Diaz
, “
You need not be afraid of phantom energy
,”
Phys. Rev. D
68
,
021303
1
(
2003
).
14.
C. B.
Netterfield
 et al, “
A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background
,”
Astrophys. J.
571
,
604
614
(
2001
).
15.
A.
Dev
,
J. S.
Alcaniz
, and
D.
Jain
, “
Cosmological consequences of a Chaplygin gas dark energy
,”
Phys. Rev. D
67
,
023515
1
(
2003
).
16.
K.
Lake
, “
Integration of the Friedmann equation for universes of arbitrary complexity
,”
Phys. Rev. D
74
,
123505
1
(
2006
).
17.
A.
Vilenkin
, “
Gravitational field of vacuum domain walls and strings
,”
Phys. Rev. D
23
,
852
857
(
1981
).
18.
R. R.
Caldwell
,
M.
Kamionkowski
, and
N. N.
Weinberg
, “
Phantom energy: Dark energy with w<1 causes a cosmic doomsday
,”
Phys. Rev. Lett.
91
,
071301
1
(
2003
).
19.
S. M.
Carroll
, “
The cosmological constant
,”
Living Reviews Relativity
4
,
1
(
2001
), ⟨relativity.livingreviews.org/Articles/lrr-2001-1/⟩.
20.
S.
Perlmutter
 et al, “
Measurements of omega and lambda from 42 high-redshift supernovae
,”
Astrophys. J.
517
,
565
586
(
1999
).
21.
A. G.
Riess
 et al, “
Observational evidence from supernovae for an accelerating universe and a cosmological constant
,”
Astron. J.
116
,
1009
1038
(
1998
).
22.
M.
Tegmark
,
M.
Zaldarriaga
, and
A. J.
Hamilton
, “
Towards a refined cosmic concordance model: Joint 11-parameter constraints from the cosmic microwave background and large-scale structure
,”
Phys. Rev. D
63
,
043007
1
(
2001
).
23.
A. L.
Maroto
, “
Moving dark energy and the CMB dipole
,”
J. Cosmol. Astropart. Phys.
0605
,
15
(
2006
).
24.
A.
Guth
, “
Inflationary universe: A possible solution to the horizon and flatness problems
,”
Phys. Rev. D
23
,
347
356
(
1981
).
25.
T. W. B.
Kibble
, “
Topology of cosmic domains and strings
,”
J. Phys. A
9
,
1387
1398
(
1976
).
26.
M.
Bucher
and
D.
Spergel
, “
Is the dark matter a solid?
,”
Phys. Rev. D
60
,
043505
1
(
1999
).
27.
L.
Conversi
,
A.
Melchiorri
,
L.
Mersini
, and
J.
Silk
, “
Are domain walls ruled out?
,”
Astropart. Phys.
21
,
443
449
(
2004
).
28.
W.
Cantrell
, private communication.
29.
A.
Vilenkin
, “
Cosmic strings
,”
Phys. Rev. D
24
,
2082
2089
(
1981
).
30.
G. R.
Blumenthal
,
S. M.
Faber
,
J. R.
Primack
, and
M. J.
Rees
, “
Formation of galaxies and large-scale structure with cold dark matter
,”
Nature (London)
311
,
517
525
(
1984
).
31.
J.
Preskill
, “
Semilocal defects
,”
Phys. Rev. D
46
,
4218
4231
(
1992
).
32.
J.
Luo
,
L.-C.
Tu
,
Z.-K.
Hu
, and
E.-J.
Luan
, “
New experimental limit on the photon rest mass with a rotating torsion balance
,”
Phys. Rev. Lett.
90
,
081801
1
(
2003
).
33.
O.
Elgaroy
and
O.
Lahav
, “
Sub-eV upper limits on neutrino masses from cosmology
,”
Phys. Scr., T
127
,
105
106
(
2006
).
34.
S. S.
Gershtein
,
A. A.
Logunov
, and
M. A.
Mestvirishvili
, “
On the upper limit for the graviton mass
,”
Dokl. Phys.
43
,
293
296
(
1998
).
35.
T. P.
Krisher
, “
New tests of the gravitational redshift effect
.”
Mod. Phys. Lett. A
5
(
23
),
1809
1813
(
1990
).
36.
R. J.
Nemiroff
, “
The opposite of dark energy: Limits on w=23 ultralight energy in the early universe
,” arXiv:astro-ph/0703737.
37.
M.
Kamionkowski
and
M.
Turner
, “
Thermal relics: Do we know their abundances?
,”
Phys. Rev. D
42
,
3310
3320
(
1990
).
38.
B.
Spokoiny
, “
Deflationary universe scenario
,”
Phys. Rev. B
315
,
40
45
(
1993
).
39.
M.
Joyce
and
T.
Prokopec
, “
Turning around the sphaleron bound: Electroweak baryogenesis in an alternative post-inflationary cosmology
,”
Phys. Rev. D
57
,
6022
6049
(
1998
).
40.
P. J.
Steinhardt
and
N.
Turok
, “
The cyclic model simplified
,”
New Astron. Rev.
49
,
43
57
(
2005
).
41.
E.
Witten
, “
String theory dynamics in various dimensions
,”
Nucl. Phys. B
443
,
85
126
(
1995
).
42.
L.
Randall
and
R.
Sundrum
, “
An alternative to compactification
,”
Phys. Rev. Lett.
83
,
4690
4693
(
1999
).
43.
K. A.
Olive
,
G.
Steigman
, and
T. P.
Walker
, “
Primordial nucleosynthesis: Theory and observations
,”
Phys. Rep.
333
,
389
407
(
2000
).
44.
F. G.
Alvarenga
,
J. C.
Fabris
,
S. V. B.
Goncalves
, and
J. A. O.
Marinho
, “
An analysis of helium primordial nucleosynthesis with a variable cosmological coupling
,”
Braz. J. Phys.
31
,
546
551
(
2001
).
45.
R.
Nakamura
,
M.
Hashimoto
,
S.
Gamow
, and
K.
Arai
, “
Big-bang nucleosynthesis in a Brans-Dicke cosmology with a varying lambda term related to WMAP
,”
Astron. Astrophys.
448
,
23
27
(
2006
).
46.
R. L.
Davis
, “
Texture: A cosmological topological defect
,”
Phys. Rev. D
35
,
3705
3708
(
1987
).
47.
N.
Turok
, “
Global texture as the origin of cosmic structure
,”
Phys. Rev. Lett.
63
,
2625
2628
(
1989
).
48.
J.
Peebles
,
Principles of Physical Cosmology
(
Princeton University Press
,
Princeton
,
1988
).
49.
I.
Zlatev
,
L.
Wang
, and
P. J.
Steinhardt
, “
Quintessence, cosmic coincidence, and the cosmological constant
,”
Phys. Rev. Lett.
82
,
896
899
(
1999
).
50.
K.
Freese
, “
Generalized Cardassian expansion: Models in which the universe is flat, matter dominated, and accelerating
,”
Nucl. Phys. B
124
,
50
54
(
2003
).
51.
F.
Shu
,
The Physical Universe, An Introduction to Astronomy
(
University Science Books
,
Sausalito, CA
,
1983
).
52.
Timeline of the Big Bang
,” ⟨en.wikipedia.org/wiki/Timeline_of_the_Big_Bang⟩.
53.
A.
Gruzinov
, “
Dark energy with w>43
,” arXiv:astro-ph/0405096.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.