We use the arithmetic-geometric mean to derive approximate solutions for the period of the simple pendulum. The fast convergence of the arithmetic-geometric mean yields accurate solutions. We also discuss the invention of the pendulum clock by Christiaan Huygens in 1656–1657.

1.
D.
Halliday
,
R.
Resnick
, and
J.
Walker
,
Fundamentals of Physics
, 7th ed. (
Wiley
,
Hoboken, NJ
,
2004
).
2.
S.
Thornton
and
J.
Marion
,
Classical Dynamics of Particles and Systems
, 4th ed. (
Saunders College
,
Fort Worth, TX
,
1995
).
3.
D. S.
Mathur
,
Elements of Properties of Matter
(
S. Chand & Company
,
New Delhi
,
1962
).
4.
L. P.
Fulcher
and
B. F.
Davis
, “
Theoretical and experimental study of the motion of the simple pendulum
,”
Am. J. Phys.
44
,
51
55
(
1976
).
5.
W. P.
Ganley
, “
Simple pendulum approximation
,”
Am. J. Phys.
53
,
73
76
(
1985
).
6.
L. H.
Cadwell
and
E. R.
Boyko
, “
Linearization of the simple pendulum
,”
Am. J. Phys.
59
,
979
981
(
1991
).
7.
M. I.
Molina
, “
Simple linearization of the simple pendulum for any amplitude
,”
Phys. Teach.
35
,
489
490
(
1997
).
8.
R. B.
Kidd
and
S. L.
Fogg
, “
A simple formula for the large-angle pendulum period
,”
Phys. Teach.
40
,
81
83
(
2002
).
9.
L. E.
Millet
, “
The large-angle pendulum period
,”
Phys. Teach.
41
,
162
163
(
2003
).
10.
R. R.
Parwani
, “
An approximate expression for the large angle period of a simple pendulum
,”
Eur. J. Phys.
25
,
37
39
(
2004
).
11.
G. E.
Hite
, “
Approximations for the period of a simple pendulum
,”
Phys. Teach.
43
,
290
292
(
2005
).
12.
A.
Beléndez
,
T.
Hernández
,
A.
Beléndez
, and
C.
Neipp
, “
Analytical approximations for the period of a nonlinear pendulum
,”
Eur. J. Phys.
27
,
539
551
(
2006
).
13.
F. M. S.
Lima
and
P.
Arun
, “
An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime
,”
Am. J. Phys.
74
,
892
895
(
2006
).
14.
M.
Abramowitz
,
Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1974
).
15.
E.
Salamin
, “
Computation of π using arithmetic-geometric mean
,”
Math. Comput.
30
,
565
570
(
1976
).
16.
J. M.
Borwein
and
P. B.
Borwein
, “
The arithmetic-geometric mean and fast computation of elementary functions
,”
SIAM Rev.
26
,
351
366
,
1984
.
17.
G.
Almkvist
and
B.
Berndt
, “
Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses π, and the ladies diary
,”
Am. Math. Monthly
95
,
585
608
(
1988
).
18.
G. E.
Andrews
,
R.
Askey
, and
R.
Roy
,
Special Functions
(
Cambridge University Press
,
New York
,
1999
).
19.
S.
Bullett
and
J.
Stark
, “
Renormalizing the simple pendulum
,”
SIAM Rev.
35
,
631
640
(
1993
).
20.
S.
Siboni
, “
Superlinearly convergent homogeneous maps and period of the pendulum
,”
Am. J. Phys.
75
,
368
373
(
2007
).
21.
N.
Aggarwal
,
N.
Verma
, and
P.
Arun
, “
Simple pendulum revisited
,”
Eur. J. Phys.
26
,
517
523
(
2005
).
22.
D.
Stevenson
and others, “
An American national standard: IEEE standard for binary float point arithmetic
,”
ACM SIGPLAN Notices
22
,
9
25
(
1987
).
23.
R. H.
Good
, “
Elliptic integrals, the forgotten functions
,”
Eur. J. Phys.
22
,
119
126
(
2001
).
24.
R. G.
Forbes
, “
Simple good approximations for the special elliptic functions in standard Fowler–Nordheim tunneling theory for a Schottky–Nordheim barrier
,”
Appl. Phys. Lett.
89
,
113122
1
(
2006
).
25.
B. A.
Cooke
, “
Some ideas for using spreadsheets in physics
,”
Phys. Educ.
32
,
80
87
(
1997
).
26.
J. E.
Baker
and
S. J.
Sugden
, “
Spreadsheets in education: The first 25years
,”
Spread. Educ.
1
,
18
43
(
2003
).
27.
M.
Fowler
, “
Using Excel to simulate pendulum motion and maybe understand calculus a little better
,”
Sci. Educ.
13
,
791
796
(
2004
).
28.
C.
Huygens
,
Horologium Oscillatorium sive De Motu Pendulorum ad Horologia Aptato Demonstrationes Geometric
, Paris, 1673;
translated into English by
R. J.
Blackwell
as
The Pendulum Clock, or Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks
(
Iowa State University Press
,
Ames
,
1986
).
29.
J.-L.
Lagrange
, “
Sur une nouvelle méthode de calcul intégral pour les différentielles affectées d’un radical carré sous lequel la variable ne passe pas le quatrième degré
,” Mem. l’Acad. Roy. Sci. Turin, 2 (
1784–85
);
Reprinted in
Oeuvres de Lagrange, tome 2
(
Gauthier-Villars
,
Paris
,
1868
), pp.
251
312
.
30.
K. F.
Gauss
, Arithmetisch Geometrisches Mittel. Werke
3
,
361
432
(
1799
) (
K. Gesellschaft der Wissenschaften zu Göttingen
, Leipzig-Berlin,
1866
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.