We derive a velocity-dependent potential for describing the dynamics of a rigid body in a rotating frame. We show that, as for one-particle systems, the different components of this potential can be associated with electromagnetic analogs. We provide some examples to demonstrate the feasibility of using the potential as an alternative description of rigid body problems.

1.
M. D.
Semon
and
G. M.
Schmieg
, “
Note on the analogy between inertial and electromagnetic forces
,”
Am. J. Phys.
49
,
689
690
(
1981
).
2.
This force was named after Coriolis (1792–1843), Refs. 3 and 4 who described it in 1832–1835, although it was first introduced by
Laplace
, (1749–1827) half a century before (Ref. 5) in relation to tidal forces.
3.
G. G.
Coriolis
, “
Mémoire sur le principe des forces vives dans les mouvements relatifs des machines
,”
J. Ec. Polytech. (Paris)
13
,
268
302
(
1832
).
4.
G. G.
Coriolis
, “
Mémoire sur les équations du mouvement relatif des systèmes de corps
,”
J. Ec. Polytech. (Paris)
15
,
142
154
(
1835
).
5.
P. S.
Laplace
, “
Recherches sur plusieurs points du systeme du monde
,”
Memoires de l’Academie Royale des Sciences de Paris
88
,
75
182
(
1776
).
6.
C. F.
Hagenow
, “
Is there a centrifugal force?
,”
Am. Phys. Teach.
3
,
190
(
1935
).
7.
G. D.
Scott
, “
Centrifugal forces and Newton’s laws of motion
,”
Am. J. Phys.
25
,
325
(
1957
).
8.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
, 3rd ed. (
Pergamon Press
,
Oxford
,
1976
).
9.
J.
Sivardiere
, “
On the analogy between inertial and electromagnetic forces
,”
Eur. J. Phys.
4
,
162
164
(
1983
).
10.
E.
Schering
, “
Hamilton-Jacobische Theorie für kräfte, deren maass von der bewegung der körper abhängt
,”
Abh. Gesellschaft Wiss. Göttingen
18
,
3
54
(
1873
).
11.
W.
Weber
, “
I. Elektrodynamische Maassbestimmungen
,”
Ann. Phys. Chem.
73
,
193
240
(
1848
) [shortened version of the 1846 paper published in the Abhandlungen der Koniglichen Sachsischen Gesellschaft der Wissenschaften, Leipzig].
12.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(
Cambridge U. P.
,
Cambridge
,
1904
).
13.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
1981
), p.
21
.
14.
M. L.
Coffman
, “
Velocity-dependent potentials for particles moving in given orbits
,”
Am. J. Phys.
20
,
195
199
(
1952
).
15.
R.
Coisson
, “
On the vector potential of Coriolis forces
,”
Am. J. Phys.
41
,
585
(
1973
).
16.
G.
Rousseaux
, “
The gauge non-invariance of classical electromagnetism
,”
Ann. Fond. Louis Broglie
30
,
387
396
(
2005
).
17.
M. B.
May
, “
Elmer A. Sperry and the gyrocompass
,”
Inst. Navigation Newslet.
17
,
8
9
(
2007
).
18.
G. I.
Opat
, “
Coriolis and magnetic forces: The gyrocompass and magnetic compass as analogs
,”
Am. J. Phys.
58
,
1173
1176
(
1990
).
19.
J.
Barcelos-Neto
and
M. B.
Dias da Silva
, “
An example of motion in a rotating frame
,”
Eur. J. Phys.
10
,
305
308
(
1989
).
20.
K.
Weltner
, “
Stable circular orbits of freely moving balls on rotating discs
,”
Am. J. Phys.
47
,
984
986
(
1979
).
21.
A. M.
Bloch
,
P. S.
Krishnaprasad
,
J. E.
Marsden
, and
R.
Murray
, “
Nonholonomic mechanical systems with symmetry
,”
Arch. Ration. Mech. Anal.
136
,
21
99
(
1996
).
22.
Lev Elsgoltz,
Differential Equations and Variational Calculus
(
MIR
,
Moscow
,
1977
).
23.
E.
Noether
, “
Invariante Variationsprobleme
,”
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
2
,
235
257
(
1918
).
24.
E. A.
Desloge
and
R. I.
Karch
, “
Noether’s theorem in classical mechanics
,”
Am. J. Phys.
45
,
336
339
(
1976
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.