We present a simple two-dimensional model of a “cat”—a body with zero angular momentum that can rotate itself with no external forces. The model is used to explain the nature of a gauge theory and to illustrate the importance of noncommutative operators. We compare the free-space cat in Newtonian mechanics and the same problem in Aristotelian mechanics at low Reynolds numbers (with the velocity proportional to the force rather than to the acceleration). This example shows the analogy between (angular) momentum in Newtonian mechanics and (torque) force in Aristotelian mechanics. We discuss a topological invariant common to the model in free space and at low Reynolds number.

1.
Geometric Phases in Physics
, edited by
A.
Shapere
and
F.
Wilczek
(
World Scientific
,
Singapore
,
1989
).
2.
Martin H.
Edwards
, “
Zero angular momentum turns
,”
Am. J. Phys.
54
(
9
),
846
847
(
1986
).
3.
Cliff
Frohlich
, “
Do springboard divers violate angular momentum conservation?
,”
Am. J. Phys.
47
,
583
592
(
1979
).
4.
J. E.
Avron
,
O.
Gat
,
O.
Kenneth
, and
U.
Sivan
, “
Optimal rotations of deformable bodies and orbits in magnetic fields
,”
Phys. Rev. Lett.
92
,
040201
1
(
2004
).
5.
L. F.
Lopez
and
F. A. B.
Coutinho
, “
Motion of articulated bodies: An application of gauge invariance in classical Lagrangian mechanics
,”
Am. J. Phys.
65
(
6
),
528
536
(
1997
).
6.
R.
Montgomery
, “
Gauge theory of the falling cat
,”
Fields Inst. Commun.
1
,
193
218
(
1993
).
7.
J. E.
Avron
and
O.
Kenneth
, “
Swimming in curved space or the baron and the cat
,”
New J. Phys.
8
,
1
15
(
2006
).
8.
J.
Wisdom
, “
Swimming in spacetime: Motion by cyclic changes in body shape
,”
Science
299
,
1865
1869
(
2003
).
9.
T. R.
Kane
and
M. P.
Scher
, “
A dynamical explanation to the falling cat phenomenon
,”
Int. J. Solids Struct.
5
,
663
670
(
1969
).
10.
F.
Debbasch
, “
Classical mechanics and gauge theories
,”
Am. J. Phys.
61
,
1131
1133
(
1993
).
11.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
(
1
),
3
11
(
1977
).
12.
R.
Dreyfus
,
J.
Baudry
, and
H. A.
Stone
, “
Purcell’s ‘rotator’: Mechanical rotation at low Reynolds number
,”
Eur. Phys. J. B
47
,
161
164
(
2005
).
13.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Kluwer
,
Dordrecht
,
1963
), 2nd ed.
14.
K.
Moriyasu
, “
Gauge invariance and hidden symmetries
,”
Am. J. Phys.
49
(
9
),
819
826
(
1981
).
15.
M.
Nakahara
,
Geometry, Topology and Physics
(
Institute of Physics, Bristol
,
1990
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.