We show how the preexponential factor of the Feynman propagator for a large class of potentials can be calculated using contour integrals. This factor is relevant in the context of tunneling processes in quantum systems. The prerequisites for this analysis involve only introductory courses in ordinary differential equations and complex variables.

1.
K.
Kirsten
,
Spectral Functions in Mathematics and Physics
(
Chapman & Hall/CRC
, Boca Raton, FL,
2002
).
2.
J. S.
Dowker
and
R.
Critchley
, “
Effective Lagrangian and energy momentum tensor in de Sitter space
,”
Phys. Rev. D
13
,
3224
3232
(
1976
).
3.
S. W.
Hawking
, “
Zeta function regularization of path integrals in curved space-time
,”
Commun. Math. Phys.
55
,
133
148
(
1977
).
4.
D. B.
Ray
and
I. M.
Singer
, “
R-torsion and the Laplacian on Riemannian manifolds
,”
Adv. Math.
7
,
145
210
(
1971
).
5.
M.
Bordag
,
E.
Elizalde
, and
K.
Kirsten
, “
Heat kernel coefficients of the Laplace operator on the D-dimensional ball
,”
J. Math. Phys.
37
,
895
916
(
1996
).
6.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
(
World Scientific
, Singapore,
2006
).
7.
L. S.
Schulman
,
Techniques and Applications of Path Integration
(
Wiley-Interscience
, New York,
1981
).
8.
F. A.
Barone
and
C.
Farina
, “
The zeta function method and the harmonic oscillator propagator
,”
Am. J. Phys.
69
,
232
235
(
2001
).
9.
L. S.
Brown
and
Y.
Zhang
, “
Path integral for the motion of a particle in a linear potential
,”
Am. J. Phys.
62
,
806
808
(
1994
).
10.
L. C.
de Albuquerque
,
C.
Farina
, and
S.
Rabello
, “
Schwinger’s method and the computation of determinants
,”
Am. J. Phys.
66
,
524
528
(
1998
).
11.
B. R.
Holstein
, “
The linear potential propagator
,”
Am. J. Phys.
65
,
414
418
(
1997
).
12.
B. R.
Holstein
, “
The harmonic oscillator propagator
,”
Am. J. Phys.
66
,
583
589
(
1998
).
13.
J.
Conway
,
Functions of One Complex Variable
(
Springer-Verlag
, New York,
1978
).
14.
R. K.
Nagle
,
E. B.
Saff
, and
A. D.
Snider
,
Fundamentals of Differential Equations
, 6th ed. (
Addison-Wesley
, New York,
2004
).
15.
S.
Coleman
, “
Fate of the false vacuum: Semiclassical theory
,”
Phys. Rev. D
15
,
2929
2936
(
1977
).
16.
C. G.
Callan
, Jr.
and
S.
Coleman
, “
Fate of the false vacuum. II. First quantum corrections
,”
Phys. Rev. D
16
,
1762
1768
(
1977
).
17.
J. S.
Langer
, “
Theory of the condensation point
,”
Ann. Phys. (N.Y.)
41
,
108
157
(
1967
).
18.
J. S.
Langer
, “
Statistical theory of the decay of metastable states
,”
Ann. Phys. (N.Y.)
54
,
258
275
(
1969
).
19.
H. M.
Edwards
,
Riemann’s Zeta Function
(
Dover
, New York,
2001
).
20.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
, New York,
1965
).
21.
H.
Boschi-Filho
and
C.
Farina
, “
Generalized thermal zeta-functions
,”
Phys. Lett. A
205
,
255
260
(
1995
).
22.
H.
Boschi-Filho
,
C.
Farina
, and
A.
de Souza Dutra
, “
The partition function for an anyon-like oscillator
,”
J. Phys. A
28
,
L7
L12
(
1995
).
23.
I. M.
Gelfand
and
A. M.
Yaglom
, “
Integration in functional spaces and its applications in quantum physics
,”
J. Math. Phys.
1
,
48
69
(
1960
).
24.
K.
Kirsten
and
A. J.
McKane
, “
Functional determinants for general Sturm-Liouville problems
,”
J. Phys. A
37
,
4649
4670
(
2004
).
25.
K.
Kirsten
and
A. J.
McKane
, “
Functional determinants by contour integration methods
,”
Ann. Phys. (N.Y.)
308
,
502
527
(
2003
).
26.
M. B.
Tarlie
,
E.
Shimshoni
, and
P. M.
Goldbart
, “
Intrinsic dissipative fluctuation rate in mesoscopic superconducting rings
,”
Phys. Rev. B
49
,
494
497
(
1994
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.