We show how the preexponential factor of the Feynman propagator for a large class of potentials can be calculated using contour integrals. This factor is relevant in the context of tunneling processes in quantum systems. The prerequisites for this analysis involve only introductory courses in ordinary differential equations and complex variables.
REFERENCES
1.
K.
Kirsten
, Spectral Functions in Mathematics and Physics
(Chapman & Hall/CRC
, Boca Raton, FL, 2002
).2.
J. S.
Dowker
and R.
Critchley
, “Effective Lagrangian and energy momentum tensor in de Sitter space
,” Phys. Rev. D
13
, 3224
–3232
(1976
).3.
S. W.
Hawking
, “Zeta function regularization of path integrals in curved space-time
,” Commun. Math. Phys.
55
, 133
–148
(1977
).4.
D. B.
Ray
and I. M.
Singer
, “R-torsion and the Laplacian on Riemannian manifolds
,” Adv. Math.
7
, 145
–210
(1971
).5.
M.
Bordag
, E.
Elizalde
, and K.
Kirsten
, “Heat kernel coefficients of the Laplace operator on the D-dimensional ball
,” J. Math. Phys.
37
, 895
–916
(1996
).6.
H.
Kleinert
, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
(World Scientific
, Singapore, 2006
).7.
L. S.
Schulman
, Techniques and Applications of Path Integration
(Wiley-Interscience
, New York, 1981
).8.
F. A.
Barone
and C.
Farina
, “The zeta function method and the harmonic oscillator propagator
,” Am. J. Phys.
69
, 232
–235
(2001
).9.
L. S.
Brown
and Y.
Zhang
, “Path integral for the motion of a particle in a linear potential
,” Am. J. Phys.
62
, 806
–808
(1994
).10.
L. C.
de Albuquerque
, C.
Farina
, and S.
Rabello
, “Schwinger’s method and the computation of determinants
,” Am. J. Phys.
66
, 524
–528
(1998
).11.
B. R.
Holstein
, “The linear potential propagator
,” Am. J. Phys.
65
, 414
–418
(1997
).12.
B. R.
Holstein
, “The harmonic oscillator propagator
,” Am. J. Phys.
66
, 583
–589
(1998
).13.
J.
Conway
, Functions of One Complex Variable
(Springer-Verlag
, New York, 1978
).14.
R. K.
Nagle
, E. B.
Saff
, and A. D.
Snider
, Fundamentals of Differential Equations
, 6th ed. (Addison-Wesley
, New York, 2004
).15.
S.
Coleman
, “Fate of the false vacuum: Semiclassical theory
,” Phys. Rev. D
15
, 2929
–2936
(1977
).16.
C. G.
Callan
, Jr. and S.
Coleman
, “Fate of the false vacuum. II. First quantum corrections
,” Phys. Rev. D
16
, 1762
–1768
(1977
).17.
J. S.
Langer
, “Theory of the condensation point
,” Ann. Phys. (N.Y.)
41
, 108
–157
(1967
).18.
J. S.
Langer
, “Statistical theory of the decay of metastable states
,” Ann. Phys. (N.Y.)
54
, 258
–275
(1969
).19.
20.
R. P.
Feynman
and A. R.
Hibbs
, Quantum Mechanics and Path Integrals
(McGraw-Hill
, New York, 1965
).21.
H.
Boschi-Filho
and C.
Farina
, “Generalized thermal zeta-functions
,” Phys. Lett. A
205
, 255
–260
(1995
).22.
H.
Boschi-Filho
, C.
Farina
, and A.
de Souza Dutra
, “The partition function for an anyon-like oscillator
,” J. Phys. A
28
, L7
–L12
(1995
).23.
I. M.
Gelfand
and A. M.
Yaglom
, “Integration in functional spaces and its applications in quantum physics
,” J. Math. Phys.
1
, 48
–69
(1960
).24.
K.
Kirsten
and A. J.
McKane
, “Functional determinants for general Sturm-Liouville problems
,” J. Phys. A
37
, 4649
–4670
(2004
).25.
K.
Kirsten
and A. J.
McKane
, “Functional determinants by contour integration methods
,” Ann. Phys. (N.Y.)
308
, 502
–527
(2003
).26.
M. B.
Tarlie
, E.
Shimshoni
, and P. M.
Goldbart
, “Intrinsic dissipative fluctuation rate in mesoscopic superconducting rings
,” Phys. Rev. B
49
, 494
–497
(1994
).© 2008 American Association of Physics Teachers.
2008
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.