Two simple spin models are studied to show that the microcanonical entropy can be a non-concave function of the energy, and that the microcanonical and canonical ensembles can give non-equivalent descriptions of the same system in the thermodynamic limit. The two models are simple variations of the classical paramagnetic spin model of non-interacting spins and are solved as easily as the latter model.

1.
Precise mathematical results expressing this statement can be found in
G.
Gallavotti
,
Statistical Mechanics: A Short Treatise
(
Springer
, New York,
1999
), Chap. 4, or
O. E.
Lanford
, “
Entropy and equilibrium states in classical statistical mechanics
,” in
Statistical Mechanics and Mathematical Problems
, edited by
A.
Lenard
(
Springer
, Berlin,
1973
), pp.
1
113
, Sec. A.
2.
Systems with short-range interactions have concave entropies because they are additive; that is, they can be decomposed into non-interacting parts in the thermodynamic limit. Systems with long-range interactions are not additive, hence the fact that they can have non-concave entropies. See the first chapter of Ref. 3 for a good exposition of this reasoning.
3.
Dynamics and Thermodynamics of Systems with Long Range Interactions
, edited by
T.
Dauxois
,
S.
Ruffo
,
E.
Arimondo
, and
M.
Wilkens
(
Springer
, New York,
2002
).
4.
D.
Lynden-Bell
and
R.
Wood
, “
The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems
,”
Mon. Not. R. Astron. Soc.
138
,
495
525
(
1968
).
5.
W.
Thirring
, “
Systems with negative specific heat
,”
Z. Phys. A
235
,
339
352
(
1970
).
6.
P.
Hertel
and
W.
Thirring
, “
A soluble model for a system with negative specific heat
,”
Ann. Phys. (N.Y.)
(N.Y.)
63
,
520
533
(
1971
).
7.
D.
Lynden-Bell
, “
Negative specific heat in astronomy, physics and chemistry
,”
Physica A
263
,
293
304
(
1999
).
8.
P.-H.
Chavanis
, “
Phase transitions in self-gravitating systems
,”
Int. J. Mod. Phys. B
20
,
3113
3198
(
2006
).
9.
D. H. E.
Gross
, “
Microcanonical thermodynamics and statistical fragmentation of dissipative systems: The topological structure of the N-body phase space
,”
Phys. Rep.
279
,
119
202
(
1997
).
10.
I.
Ispolatov
and
E. G. D.
Cohen
, “
On first-order phase transitions in microcanonical and canonical non-extensive systems
,”
Physica A
295
,
475
487
(
2000
).
11.
J.
Barré
,
D.
Mukamel
, and
S.
Ruffo
, “
Inequivalence of ensembles in a system with long-range interactions
,”
Phys. Rev. Lett.
87
,
030601
1
(
2001
).
12.
R. S.
Ellis
,
H.
Touchette
, and
B.
Turkington
, “
Thermodynamic versus statistical nonequivalence of ensembles for the mean-field Blume-Emery-Griffiths model
,”
Physica A
335
,
518
538
(
2004
).
13.
M.
Costeniuc
,
R. S.
Ellis
, and
H.
Touchette
, “
Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model
,”
J. Math. Phys.
46
,
063301
1
063301
25
(
2005
).
14.
R. S.
Ellis
,
K.
Haven
, and
B.
Turkington
, “
Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows
,”
Nonlinearity
15
,
239
255
(
2002
).
15.
B.
Turkington
,
A.
Majda
,
K.
Haven
, and
M.
DiBattista
, “
Statistical equilibrium predictions of jets and spots on Jupiter
,”
Proc. Natl. Acad. Sci. U.S.A.
98
,
12346
12350
(
2001
).
16.
See, for example,
R. K.
Pathria
,
Statistical Mechanics
, 2nd ed. (
Butterworth Heinemann
, Oxford,
1996
), Sec. 3.9.
17.
J. F.
Nagle
, “
The one-dimensional KDP model in statistical mechanics
,”
Am. J. Phys.
36
,
1114
1117
(
1968
).
18.
H. S.
Leff
, “
What if entropy were dimensionless?
,”
Am. J. Phys.
67
,
1114
1122
(
1999
).
19.
Other examples of one-dimensional models having phase transitions in the canonical ensemble can be found in
C.
Kittel
, “
Phase transition of a molecular zipper
,”
Am. J. Phys.
37
,
917
920
(
1969
) and Ref. 17.
20.

Recall that the Legendre transform of f(β) yields s(u) when the latter is concave.

21.
See Refs. 22 and 25 for the complete calculation.
22.
H.
Touchette
, “
A simple spin model with nonequivalent microcanonical and canonical ensembles
,” arXiv:cond-mat/0504020v1 (
2005
).
23.
H.
Touchette
,
R. S.
Ellis
, and
B.
Turkington
, “
An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles
,”
Physica A
340
,
138
146
(
2004
).
24.
H.
Touchette
and
R. S.
Ellis
, “
Nonequivalent ensembles and metastability
,” in
Complexity, Metastability and Nonextensivity
, edited by
C.
Beck
,
G.
Benedek
,
A.
Rapisarda
, and
C.
Tsallis
(
World Scientific
, Singapore,
2005
), p.
81
.
25.
H.
Touchette
, “
Equivalence and nonequivalence of the microcanonical and canonical ensembles: A large deviations study
,” Ph.D. thesis, Department of Physics,
McGill University
,
2003
. Available at ⟨www.maths.qmul.ac.uk/∼ht⟩.
26.
H.
Touchette
and
C.
Beck
, “
Nonconcave entropies in multifractals and the thermodynamic formalism
,”
J. Stat. Phys.
125
,
455
471
(
2006
).
27.
M.
Costeniuc
,
R. S.
Ellis
,
H.
Touchette
, and
B.
Turkington
, “
Generalized canonical ensembles and ensemble equivalence
,”
Phys. Rev. E
73
,
026105
1
(
2006
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.