We discuss the background associated with an electrochromic device that can reversibly change its color and optical density at a specific potential. We discuss the underlying science needed to make a new polyaniline (PAN)/polyvinyl alcohol(PVA) electrochromic composite film on an indium-tin oxide (ITO) conducting glass by electropolymerization and describe a reversible redox transition of the PAN. The experiment gives students an opportunity to fabricate an electrochromic device containing PAN, one of the most important conducting polymers. The experimental conditions are flexible so that each group of students can construct their own electrochromic device with particular behavior. Two techniques for polymerizing the PAN and three methods of demonstrating the electrochromism are given, depending on the available apparatus. A sophisticated three-electrode potentiostat or a crude apparatus containing a battery, wire, a variable resistor, and a voltage meter is used to synthesize the PAN deposit. The electrochromic property is repetitively observed by reversibly changing the applied potentials on the device. A potentiostatic apparatus, a single flashlight battery, or a flashlight battery accompanied by a variable resistor allows students to observe multicolor electrochromism. The experiments significantly enhance students’ understanding of polymer chemicophysics principles and their appreciation of novel variable colorful films. The experiments are safe and easy to perform, provided that appropriate precautions are taken.

1.
T. H.
Lin
and
K. C.
Ho
, “
A complementary electrochromic device based on polyaniline and poly (3, 4-ethylenedioxythiophene)
,”
Sol. Energy Mater. Sol. Cells
90
,
506
520
(
2006
).
2.
C.
Marcel
and
J. M.
Tarascon
, “
An all-plastic WO3 center dot H2O/polyaniline electrochromic device
,”
Solid State Ionics
143
,
89
101
(
2001
).
3.
R.
Gangopadhyay
,
A.
De
, and
G.
Ghosh
, “
Polyaniline-poly (vinyl alcohol) conducting composite: Material with easy processability and novel application potential
,”
Synth. Met.
123
,
21
31
(
2001
);
M.
Morita
, “
Effects of solvent and electrolyte on the electrochromic behavior and degradation of chemically prepared polyaniline-poly(vinyl alcohol) composite films
,”
J. Polym. Sci., Part B: Polym. Phys.
32
,
231
242
(
1994
).
4.
A.
Watanabe
,
K.
Mori
,
Y.
Iwasaki
,
Y.
Nakamura
, and
S.
Niizuma
, “
Electrochromism of polyaniline film prepared by electrochemical polymerization
,”
Macromolecules
20
,
1793
1796
(
1987
).
5.
H.
Hu
,
L.
Hechavarria
, and
J.
Campos
, “
Optical and electrical responses of polymeric electrochromic devices: effect of polyacid incorporation in polyaniline film
,”
Solid State Ionics
161
,
165
172
(
2003
).
6.
Y. X.
Li
,
J.
Hagen
, and
D.
Haarer
, “
Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystallineTiO2 photovoltaic cell
,”
Synth. Met.
94
,
273
277
(
1998
);
B. J.
Forslund
, “
A simple laboratory demonstration of electrochromism
,”
J. Chem. Educ.
74
,
962
963
(
1997
).
7.
A.
Bessiere
,
C.
Duhamel
,
J. C.
Badot
,
V.
Lucas
, and
M. C.
Certiat
, “
Study and optimization of a flexible electrochromic device based on polyaniline
,”
Electrochim. Acta
49
,
2051
2055
(
2004
).
8.
X. G.
Li
,
Q. F.
, and
M. R.
Huang
, “
Facile synthesis and optimization of conductive copolymer nanoparticles and nanocomposite films from aniline and sulfodiphenylamine
,”
Chem.-Eur. J.
12
,
1349
1359
(
2006
);
X. G.
Li
,
H. Y.
Wang
, and
M. R.
Huang
, “
Synthesis, film-forming, and electronic properties of o-phenylenediamine copolymers displaying an uncommon tricolor
,”
Macromolecules
40
,
1489
1496
(
2007
).
9.
P. J.
Kulesza
,
K.
Miecznikowski
,
M.
Chojak
,
M. A.
Malik
,
S.
Zamponi
, and
R.
Marassi
, “
Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate
,”
Electrochim. Acta
46
,
4371
4378
(
2001
).
10.
Z. H.
Wang
,
C.
Li
,
E. M.
Scherr
,
A. G.
MacDiarmid
, and
A. J.
Epstein
, “
Three dimensionality of ‘metallic’ states in conducting polymers: Polyaniline
,”
Phys. Rev. Lett.
66
,
1745
1748
(
1991
).
11.
X. G.
Li
,
W.
Duan
,
M. R.
Huang
, and
L. N. J.
Rodriguez
, “
Electrocopolymerization of meta-phenylenediamine and ortho-phenetidine
,”
React. Funct. Polym.
62
,
261
270
(
2005
).
12.
B. C.
Sherman
,
W. B.
Euler
, and
R. R.
Force
, “
Polyaniline-a conducting polymer: Electrochemical synthesis and electrochromic properties
,”
J. Chem. Educ.
71
,
A94
A96
(
1994
).
13.
P.
Somani
,
A. B.
Mandale
, and
S.
Radhakrishnan
, “
Study and development of conducting polymer-based electrochromic display devices
,”
Acta Mater.
48
,
2859
2871
(
2000
).
14.
J.
Yano
,
K.
Noguchi
,
S.
Yamasaki
, and
S.
Yamasaki
, “
Novel vermilion greenish blue electrochromism of PPTA iridium oxide Au thin films prepared by electrodeposition
,”
Electrochemistry (Tokyo, Jpn.)
72
,
304
309
(
2004
).
15.
E. L.
Tassi
and
M. A.
Depaoli
, “
An electrochromic device based on association of the graft copolymer of polyaniline and nitrilic rubber with WO3
,”
Electrochim. Acta
39
,
2481
2484
(
1994
).
16.
K.
Kimura
and
J.
Kumar
, “
Electrochromism of polyaniline/poly (4-styrenesulfonate) complex
,”
J. Printing Sci. Technol.
41
,
109
116
(
2004
).
17.
P.
Andersson
,
M.
Berggren
, and
T.
Kugler
, “
Switchable optical polarizer based on electrochromism in stretch-aligned polyaniline
,”
Appl. Phys. Lett.
83
,
1307
1309
(
2003
).
18.
X. G.
Li
,
M. R.
Huang
,
W.
Duan
, and
Y. L.
Yang
, “
Novel multifunctional polymers from aromatic diamines by oxidative polymerizations
,”
Chem. Rev. (Washington, D.C.)
102
,
2925
3030
(
2002
).
19.
W. A.
Gazotti
, Jr.
,
G.
Casalbore-Miceli
,
S.
Mitzakoff
,
A.
Geri
,
M. C.
Gallazzi
, and
M. A. D.
Paoli
, “
Conductive polymer blends as electrochromic materials
,”
Electrochim. Acta
44
,
1965
1971
(
1999
).
20.
T. L. A.
Campos
,
D. F.
Kersting
, and
C. A.
Ferreira
, “
Chemical synthesis of polyaniline using sulphanilic acid as dopant agent into the reactional medium
,”
Surf. Coat. Technol.
122
,
3
5
(
1999
).
21.
L. Y.
Su
,
Z. D.
Xiao
, and
Z. H.
Lu
, “
All solid-state electrochromic device with PMMA gel electrolyte
,”
Mater. Chem. Phys.
52
,
180
183
(
1998
).
22.
P. R.
Somani
and
S.
Radhakrishnan
, “
Electrochromic materials and devices: Present and future
,”
Mater. Chem. Phys.
77
,
117
133
(
2003
).
23.
J.
Yano
,
F.
Takamura
,
K.
Masaoka
,
S.
Yamasaki
,
Y.
Ota
, and
A.
Kitani
, “
Morphology of poly (N-methylaniline) electrodeposited from different acid solutions
,”
Synth. Met.
135
,
417
418
(
2003
).
24.
R.
Prakash
, “
Electrochemistry of polyaniline: Study of the pH effect and electrochromism
,”
J. Appl. Polym. Sci.
83
,
378
385
(
2002
).
25.
C. M.
Li
and
S. L.
Mu
, “
The electrochemical activity of sulfonic acid ring-substituted polyaniline in the wide pH range
,”
Synth. Met.
149
,
143
149
(
2005
).
26.
Y.
Kim
and
E.
Kim
, “
Electrochromic properties of nanochromic windows assembled by the layer-by-layer self-assembly technique
,”
Curr. Appl. Phys.
6
(
Suppl. 1
),
e202
e205
(
2006
);
C. H.
Yang
,
Y. K.
Chih
,
W. C.
Wu
, and
C. H.
Chen
, “
Molecular assembly engineering of self-doped polyaniline film for application in electrochromic devices
,”
Electrochem. Solid-State Lett.
9
,
C5
C8
(
2006
).
27.
M. K.
Ram
,
E.
Maccioni
, and
C.
Nicolini
, “
The electrochromic response of polyaniline and its copolymeric systems
,”
Thin Solid Films
303
,
27
33
(
1997
).
28.
A. A.
Argun
,
P. H.
Aubert
,
B. C.
Thompson
,
I.
Schwendeman
,
C. L.
Gaupp
,
J.
Hwang
,
N. J.
Pinto
,
D. B.
Tanner
,
A. G.
MacDiarmid
, and
J. R.
Reynolds
, “
Multicolored electrochromism polymers: Structures and devices
,”
Chem. Mater.
16
,
4401
4412
(
2004
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.