The problem of two unequal electrodes within a shielding cavity in the presence of a dielectric partially filling the gap is treated by means of overrelaxation methods in the axisymmetric case. A discrepancy in the literature concerning the boundary equation between two dielectrics is resolved and the difference equation for the dielectric corner point is obtained by means of Gauss’ law. Some numerical results are described.

1.
G.
Kirchhoff
,
Gesammelte Abhandlungen
(
Johann Ambrosius Barth
,
Leipzig
,
1882
), pp.
101
117
.
2.
H. J.
Wintle
and
S.
Kurylowicz
, “
Edge corrections for strip and disc capacitors
,”
IEEE Trans. Instrum. Meas.
IM-34
(
1
),
41
47
(
1985
).
3.
G. J.
Sloggett
,
N. G.
Barton
, and
S. J.
Spencer
, “
Fringing fields in disc capacitors
,”
J. Phys. A
19
,
2725
2736
(
1986
);
G. J.
Sloggett
,
N. G.
Barton
, and
S. J.
Spencer
,also “
Addendum to ‘Fringing fields in disc capacitors’
,”
J. Phys. A
20
,
4061
4062
(
1987
).
4.
G. W.
Parker
, “
What is the capacitance of parallel plates?
Comput. Phys.
5
,
534
540
(
1991
).
5.
G. T.
Carlson
and
B. L.
Illman
, “
The circular disk parallel plate capacitor
,”
Am. J. Phys.
62
,
1099
1105
(
1994
).
6.
G. W.
Parker
, “
Electric field outside a parallel plate capacitor
,”
Am. J. Phys.
70
(
5
),
502
506
(
2002
).
7.
T. T.
Grove
,
M. F.
Masters
, and
R. E.
Miers
, “
Determining dielectric constants using a parallel plate capacitor
,”
Am. J. Phys.
73
(
1
),
52
56
(
2005
).
8.
T. V.
Rao
, “
Capacity of the circular plate condenser: Analytical solutions for large gaps between the plates
,”
J. Phys. A
38
,
10037
10056
(
2005
).
9.
A. H.
Scott
and
H. L.
Curtis
, “
Edge correction in the determination of dielectric constant
,”
J. Res. Natl. Bur. Stand.
22
,
747
775
(
1939
).
10.
N.
Sneddon
,
Mixed Boundary Value Problems in Potential Theory
(
Wiley
,
New York
,
1966
), p.
240
.
11.
A.
Naini
and
Mark
Green
, “
Fringing fields in a parallel-plate capacitor
,”
Am. J. Phys.
45
(
9
),
877
879
(
1977
).
12.
F.
Thompson
and
J. K.
Gagon
, “
Fringe capacitance of a parallel-plate capacitor
,”
Phys. Educ.
17
,
80
82
(
1982
).
13.
S.
Burt
,
N.
Finney
, and
J.
Young
, “
Fringe field of parallel plate capacitor
,”
AAPT 129th National Meeting
, Sacramento, CA, 31 Jul–4 August
2004
; paper available from Professor Younes Ataiiyan, Santa Rosa Junior College, Department of Engineering and Physics, 1501 Mendoncino Ave., Santa Rosa, CA 95401.
14.
D. F.
Bartlett
,
P. E.
Goldhagen
, and
E. A.
Phillips
, “
Experimental test of Coulomb’s law
,”
Phys. Rev. D
2
,
483
487
(
1970
).
15.
J. D.
Jackson
, “
A curious and useful theorem in two-dimensional electrostatics
,”
Am. J. Phys.
67
(
2
),
107
115
(
1998
).
16.
H.
Houtman
,
F. W.
Jones
, and
C. J.
Kost
, “
Laplace and Poisson equation solution by RE-LAX3D
,”
Comput. Phys.
8
(
4
),
469
479
(
1994
).
17.
F.
Pinto
, “
Analytical and experimental investigation on a vibrating annular membrane attached to a central free, rigid core
,”
J. Sound Vib.
291
,
1278
1287
(
2006
).
18.
J.
Conway
and
A. P.
Anderson
, “
Electromagnetic techniques in hyperthermia
,”
Clin. Phys. Physiol. Meas.
7
(
4
),
287
318
(
1986
).
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Butterworth-Heinemann
,
Oxford
,
1998
), Sec. 7.
20.
M.
DiStasio
and
W. C.
McHarris
, “
Electrostatic problems? Relax!
Am. J. Phys.
47
(
5
),
440
444
(
1979
).
21.
E. M.
Purcell
,
Electricity and Magnetism
(
McGraw-Hill
,
Boston
,
1985
); Prob. 3.30 and Chap. 10.
22.
W. H.
Press
,
S. A.
Teukolski
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran
(
Cambridge U. P.
,
Cambridge
,
1986
), pp.
854
860
.
23.
J. C.
Strikwerda
,
Finite Difference Schemes and Partial Differential Equations
(
SIAM
,
Philadelphia
,
2004
), pp.
325
361
.
24.
W. M.
MacDonald
, “
Discretization and truncation errors in a numerical solution of Laplace’s equation
,”
Am. J. Phys.
62
(
2
),
169
173
(
1994
).
25.
J. A.
Harrison
, “
A computer study of uniform field electrodes
,”
Br. J. Appl. Phys.
18
,
1617
1627
(
1967
).
26.
C.
Weber
, “
Numerical solutions of Laplace’s and Poisson’s equations and the calculation of electron trajectories and electron beams
,” in
Focusing of Charged Particles
, edited by
A.
Septier
(
Academic
,
New York
,
1967
), Vol.
1
, pp.
45
162
.
27.
D. F.
Bartlett
and
T. R.
Corle
, “
The circular parallel plate capacitor: A numerical solution for the potential
,”
J. Phys. A
18
,
1337
1342
(
1985
).
28.
J. A.
Seeger
, “
Solution of Laplace’s equation in a multidielectric region
,”
Proc. IEEE
56
,
1393
1394
(
1968
). There is an important Errata in Ref. 28; in line 3 of Eq. (3) there should be a factor of 4 in front of the ratio of dielectric constants, and in line 1 of Eq. (4) V1 and V3 should be interchanged.
29.
J. E.
Boers
, “
Digital computer solution of Laplace’s equation including dielectric surfaces
,” Mathematics Notes, SC-RR-69–446, Research Report, Sandia Laboratories, December
1969
.
30.
T. T.
Crow
, “
Solutions to Laplace’s equation using spreadsheets on a personal computer
,”
Am. J. Phys.
55
(
9
),
817
823
(
1987
).
31.
M. V. K.
Chari
and
S. J.
Salon
,
Numerical Methods in Electromagnetism
(
Academic
,
San Diego
,
2000
), pp.
109
111
.
32.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Dover
,
New York
,
1954
), Art. 201, pp.
308
309
.
33.
R. A.
Kromhout
and
W. G.
Moulton
, “
Effect of fringing field on capacitance and measurement of ϵ0
,”
Am. J. Phys.
24
(
9
),
631
632
(
1956
).
34.
N. N.
Lebedev
, “
The electric field at the edge of a plane condenser containing a dielectric
,”
Sov. Phys. Tech. Phys.
3
,
1234
1243
(
1958
).
35.
I. M.
Minkov
, “
Electrostatic field of a condenser with dielectric insert
,”
Sov. Phys. Tech. Phys.
5
,
1143
1146
(
1961
).
36.
K.
Asano
,
A. W.
Dipert
, and
C. D.
Hendricks
, “
A note on the uniform field approximation when guard rings are used
,”
Am. J. Phys.
38
(
12
),
1452
1454
(
1970
).
37.
D. A.
Hastings
, “
Computational methods for electrical potential and other field problems
,”
Am. J. Phys.
43
(
6
),
518
524
(
1975
).
38.
F. X.
Hart
, “
Validating spreadsheet solutions to Laplace’s equation
,”
Am. J. Phys.
57
(
11
),
1027
1034
(
1989
).
39.
P. W.
Gash
, “
Improved numerical solutions of Laplace’s equation
,”
Am. J. Phys.
59
(
6
),
509
515
(
1991
).
40.
C. F.
Gauss
, Brief an Gerling, Werke, Vol. 9 (
1823
), translated by G. Forsythe in “
Gauss to Gerling on Relaxation
,”
Math. Tables Aids Comput.
5
,
255
258
(
1951
).
41.
D. M.
Young
,
Iterative Solutions of Large Linear Systems
(
Dover
,
Mineola, NY
,
1971
), Chap. 6.
42.
R. S.
Varga
,
Matrix Iterative Analysis
(
Springer
,
Berlin
,
2000
), pp.
301
304
and Chap. 9.
43.
R. V.
Southwell
,
Relaxation Methods in Engineering Science
(
Clarendon
,
Oxford
,
1940
), pp.
233
243
.
44.
R. V.
Southwell
,
Relaxation Methods in Theoretical Physics
(
Clarendon
,
Oxford
,
1946
), pp.
20
24
and
89
92
.
45.
G. E.
Forsythe
and
W. R.
Wasow
,
Finite-Difference Methods for Partial Differential Equations
(
Dover
,
Mineola, NY
,
2004
), pp.
241
283
.
46.
R.
Barrett
,
M.
Berry
,
T. F.
Chan
,
J.
Demmel
,
J.
Donato
,
J.
Dongarra
,
J. V.
Eijkhout
,
R.
Pozo
,
C.
Romine
, and
H. V.
der Vorst
,
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
(
SIAM
,
Philadelphia
,
1994
), pp.
12
13
.
47.
R.
Haberman
,
Applied Partial Differential Equations
(
Pearson Prentice Hall
,
Upper Saddle River, NJ
,
2004
), pp.
260
266
.
48.
J. W.
Thomas
,
Numerical Partial Differential Equations, Conservation Laws and Elliptic Equations
(
Springer
,
New York
,
1999
), Chap. 10, especially Sec. 10.11.
49.
G. D.
Smith
,
Numerical Solution of Partial Differential Equations
(
Clarendon
,
Oxford
,
1985
).
50.
J. P.
McKelvey
, “
Electrostatic fields in inhomogeneous dielectrics
,”
Am. J. Phys.
56
(
8
),
713
718
(
1988
).
51.
P.
Lorraine
,
D. P.
Corson
, and
F.
Lorraine
,
Electromagnetic Fields and Waves
(
Freeman
,
New York
,
1988
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.