We discuss the correspondence between spinning, charged spherical sources in electrodynamics and spinning, massive spherical sources in linearized general relativity and show that the form of the potentials and equations of motion are similar in the two cases in the slow motion limit. This similarity allows us to interpret the Kerr metric in analogy with a spinning sphere in electrodynamics and aids in understanding linearized general relativity, where the “forces” are effective and come from the intrinsic curvature of space-time.
REFERENCES
1.
Robert M.
Wald
, General Relativity
(Univ. of Chicago
, Chicago
, 1984
).2.
3.
Charles W.
Misner
, Kip S.
Thorne
, and John Archibald
Wheeler
, Gravitation
(Freeman
, New York
, 1973
).4.
David J.
Griffiths
, Introduction to Electrodynamics
, 3rd ed. (Prentice Hall
, Upper Saddle River, NJ
, 1999
).5.
6.
We have the usual relation, .
7.
Roy
P.
Kerr
, “Gravitational field of a spinning mass as an example of algebraically special metrics
,” Phys. Rev. Lett.
11
(5
), 237
–238
(1963
).8.
Robert H.
Boyer
and Richard W.
Lindquist
, “Maximal analytic extension of the Kerr metric
,” J. Math. Phys.
8
(2
), 265
–281
(1967
).9.
R. H.
Boyer
and T. G.
Price
, “An interpretation of the Kerr metric in general relativity
,” Proc. Cambridge Philos. Soc.
61
, 265
–281
(1965
).10.
S.
Chandrasekhar
, The Mathematical Theory of Black Holes
(Oxford U. P.
, Oxford
, 1992
).11.
S.
Deser
and J.
Franklin
, “Time (in)dependence in general relativity
,” Am. J. Phys.
75
, 281
–283
(2007
).12.
L. D.
Landau
and E. M.
Lifshitz
, The Classical Theory of Fields
(Butterworth-Heinenann
, Oxford
, 1996
).13.
James B.
Hartle
, Gravity: An Introduction to Einstein’s General Relativity
(Addison-Wesley
, San Francisco, CA
, 2003
).14.
Michael D.
Hartl
, “Dynamics of spinning test particles in Kerr spacetime
,” Phys. Rev. D
67
, 024005
–1
(2003
).15.
A.
Papapetrou
, “Spinning test-particles in general relativity I
,” Proc. R. Soc. London
209
, 248
–258
(1951
).16.
See ⟨http://einstein.stanford.edu⟩.
17.
Brandon
Carter
, “Global structure of the Kerr family of gravitational fields
,” Phys. Rev.
174
(3
), 1559
–1571
(1968
).18.
Fernando
de Felice
and Giovanni
Preti
, “On the meaning of the separation constant in the Kerr metric
,” Class. Quantum Grav.
16
, 2929
–2935
(1999
).19.
W. G.
Dixon
, “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum
,” Proc. R. Soc. London
314
(1519
), 499
–527
(1970
).© 2007 American Association of Physics Teachers.
2007
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.