Damped mechanical systems with various forms of damping are quantized using the path integral formalism. In particular, we obtain the path integral kernel for the linearly damped harmonic oscillator and a particle in a uniform gravitational field with linearly or quadratically damped motion. In each case, we study the evolution of Gaussian wave packets and discuss the characteristic features that help us distinguish between different types of damping. For quadratic damping we show the connection of the action and equation of motion to a zero-dimensional version of a scalar field theory. We also demonstrate that the equation of motion for quadratic damping can be identified as a geodesic equation in a fictitious two-dimensional space.

1.
P.
Timmerman
and
J. P.
van der Weele
, “
On the rise and fall of a ball with linear or quadratic drag
,”
Am. J. Phys.
67
(
6
),
538
546
(
1999
).
2.
R.
Resnick
,
D.
Halliday
, and
J.
Walker
,
Fundamentals of Physics
, 6th ed. (
Wiley (Asia)
, Singapore,
2004
).
3.
G. J.
Milburn
and
D. F.
Walls
, “
Quantum solutions of the damped harmonic oscillator
,”
Am. J. Phys.
51
(
12
),
1134
1136
(
1983
).
4.
L.
Herrera
,
L.
Núnẽz
,
A.
Patiño
, and
H.
Rago
, “
A variational principle and the classical and quantum mechanics of the damped harmonic oscillator
,”
Am. J. Phys.
54
(
3
),
273
277
(
1986
).
5.
B.
Yurke
, “
Quantizing the damped harmonic oscillator
,”
Am. J. Phys.
54
(
12
),
1133
1139
(
1986
).
6.
B. R.
Holstein
, “
The harmonic oscillator propagator
,”
Am. J. Phys.
66
(
7
),
583
589
(
1998
).
7.
F. U.
Chaos
and
L.
Chaos
, “
Comment on ‘The harmonic oscillator propagator’ by B. R. Holstein [Am. J. Phys. 66(7), 583–589 (1998)]
,”
Am. J. Phys.
67
(
7
),
643
(
1999
).
8.
B. R.
Holstein
, “
Forced harmonic oscillator: A path integral approach
,”
Am. J. Phys.
53
(
8
),
723
725
(
1985
).
9.
S. M.
Cohen
, “
Path integral for the quantum harmonic oscillator using elementary methods
,”
Am. J. Phys.
66
(
6
),
537
540
(
1998
).
10.
L.
Moriconi
, “
An elementary derivation of the harmonic oscillator propagator
,”
Am. J. Phys.
72
(
9
),
1258
1259
(
2004
).
11.
K.-M.
Poon
and
G.
Muñoz
, “
Path integrals and propagators for quadratic Lagrangians in three dimensions
,”
Am. J. Phys.
67
(
6
),
547
551
(
1999
).
12.
N. S.
Thornber
and
E. F.
Taylor
, “
Propagator for the simple harmonic oscillator
,”
Am. J. Phys.
66
(
11
),
1022
1024
(
1998
).
13.
L. A.
Beauregard
, “
Propagators in nonrelativistic quantum mechanics
,”
Am. J. Phys.
34
(
4
),
324
332
(
1966
).
14.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
, 4th ed. (
World Scientific
, Singapore,
2004
).
15.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
, New York,
1965
).
16.
J. V.
Narlikar
and
T.
Padmanabhan
,
Gravity, Gauge Theories and Quantum Cosmology
(
Riedel
, Dordrecht, Holland,
1986
).
17.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley
, Reading, MA,
1994
).
18.
C. E.
Smith
, “
Expressions for frictional and conservative force combinations within the dissipative Lagrange-Hamilton formalism
,” physics/0601133.
19.
C. C.
Gerry
, “
On the path integral quantization of the damped harmonic oscillator
,”
J. Math. Phys.
25
,
1820
1822
(
1984
).
20.
K.-H.
Yeon
,
S.-S.
Kim
,
Y.-M.
Moon
,
S.-K.
Hong
,
C.-I.
Um
, and
T. F.
George
, “
The quantum under-, critical- and over-damped harmonic oscillators
,”
J. Phys. A
34
,
7719
7732
(
2001
).
21.
For a recent review see
C.-I.
Um
,
K.-H.
Yeon
, and
T. F.
George
, “
The quantum damped harmonic oscillator
,”
Phys. Rep.
362
,
63
192
(
2002
).
22.
M.
Razavy
, “
Wave equation for a dissipative force quadratic in velocity
,”
Phys. Rev. A
36
,
482
486
(
1987
).
23.
F.
Negro
and
A.
Tartaglia
, “
Quantization of motion in a velocity-dependent field: The v2 case
,”
Phys. Rev. A
23
,
1591
1593
(
1981
).
24.
A.
Tartaglia
, “
Non-conservative forces, Lagrangians and quantization
,”
Eur. J. Phys.
4
,
231
234
(
1983
).
25.
F.
Negro
and
A.
Tartaglia
, “
The quantization of quadratic friction
,”
Phys. Lett. A
77
,
1
2
(
1980
).
26.
C.
Stuckens
and
D. H.
Kobe
, “
Quantization of a particle with a force quadratic in the velocity
,”
Phys. Rev. A
34
,
3565
3567
(
1986
).
27.
J. S.
Borges
,
L. N.
Epele
,
H.
Fanchiotti
,
C. A.
García Canal
, and
F. R.
Simo
, “
Quantization of a particle with a force quadratic in the velocity
,”
Phys. Rev. A
38
,
3101
3103
(
1988
).
28.
S.
Kar
, “
A simple mechanical analog of the field theory of tachyon matter
,” hep-th/0210108.
29.
The “tachyon matter” in the present context is different from the “tachyon” in the special theory of relativity, where it refers to a hypothetical particle that can propagate at a superluminal velocity (Ref. 30). In quantum field theory and string theory the “tachyon” corresponds to a scalar field (or a mode of a scalar field) for which the square of the mass is negative. The presence of tachyonic modes in a theory can give rise to instabilities.
30.
E. C. G.
Sudarshan
,
O. M. P.
Bilaniuk
, and
V.
Deshpande
, “
‘Meta’ relativity
,”
Am. J. Phys.
30
(
10
),
718
723
(
1962
).
31.
A.
Sen
, “
Rolling tachyon
,”
J. High Energy Phys.
04
,
048
1
(
2002
);
A.
Sen
, “
Tachyon matter
,”
J. High Energy Phys.
07
,
065
1
(
2002
).
32.
H. H.
Denman
, “
Time translation invariance for certain dissipative classical systems
,”
Am. J. Phys.
36
(
6
),
516
519
(
1968
).
33.
G.
Ambika
and
V. M.
Nandakumaran
, “
The quantum effects in quadratically damped systems
,”
Phys. Lett. A
192
,
331
336
(
1994
).
34.
For details see
S.
Weinberg
,
Gravitation and Cosmology
(
Wiley
, New York,
1972
).
35.

The components of the Christoffel symbol depend on the metric tensor components as Γμνα=12gασ(μgσν+νgσμσgμν).

36.

The components of Riemann-Christoffel curvature tensor are given by Rβμνα=μΓβνανΓβμα+ΓμσαΓβνσΓνσαΓβμσ. For details of its properties, see any text on the general theory of relativity.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.