We discuss the seminal article by Le Bellac and Lévy-Leblond in which they identified two Galilean limits (called “electric” and “magnetic” limits) of electromagnetism and their implications. Recent work has shed new light on the choice of gauge conditions in classical electromagnetism. We show that the recourse to potentials is compelling in order to demonstrate the existence of both (electric and magnetic) limits. We revisit some nonrelativistic systems and related experiments, in the light of these limits, in quantum mechanics, superconductivity, and the electrodynamics of continuous media. Much of the current technology where waves are not taken into account can be described in a coherent fashion by the two limits of Galilean electromagnetism instead of an inconsistent mixture of these limits.

1.
M.
Le Bellac
and
J. M.
Lévy-Leblond
, “
Galilean electromagnetism
,”
Nuovo Cimento Soc. Ital. Fis., A
14
,
217
233
(
1973
).
2.
J. M.
Lévy-Leblond
, “
Nonrelativistic particles and wave equations
,”
Commun. Math. Phys.
6
,
286
311
(
1967
).
3.
M.
de Montigny
and
G.
Rousseaux
, “
On the electrodynamics of moving bodies at low velocities
,”
Eur. J. Phys.
27
,
755
768
(
2006
).
4.
H. K.
Dirks
, “
Quasi-stationary fields for microelectronic applications
,”
Electr. Eng.
79
,
145
155
(
1996
).
5.
U.
van Rienen
,
J.
Flehr
,
U.
Schreiber
, and
V.
Motrescu
, “
Modeling and simulation of electro-quasistatic fields
,” in Birkhauser Verlag (Basel, Switzerland),
International Series of Numerical Mathematics
146
,
17
31
(
2003
);
U.
Schreiber
,
J.
Flehr
,
V.
Motrescu
, and
U.
van Rienen
, “
The electro-quasistatic model in different applications
,” in
Scientific Computing in Electrical Engineering Proc. 4th Conference on Scientific Computing in Electrical Engineering
,
W. H. A.
Schilders
,
E. Jan W.
ter Maten
, and
S. H. M. J.
Houben
, eds., SCEE Springer-Verlag Berlin Mathematics in Industry
4
,
356
363
(
2004
);
U.
van Rienen
,
J.
Flehr
,
U.
Schreiber
,
S.
Schulze
,
U.
Gimsa
,
W.
Baumann
,
D. G.
Weiss
,
J.
Gimsa
,
R.
Benecke
, and
H. W.
Pau
, “
Electro-quasistatic simulations in bio-systems engineering and medical engineering advances
,”
Radio Sci.
3
,
39
49
(
2005
).
6.
J.
Larsson
, “
Electromagnetics from a quasistatic perspective
,”
Am. J. Phys.
75
,
230
239
(
2007
).
7.
H.
Goldstein
,
Classical Mechanics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1981
).
8.
J. M.
Lévy-Leblond
, “
Une nouvelle limite non-relativiste du groupe de Poincaré
,”
Ann. Inst. Henri Poincare, Sect. A
3
,
1
12
(
1965
).
9.
A.
O’Rahilly
,
Electromagnetic Theory: A Critical Examination of Fundamentals
(
Dover
,
New York
,
1965
).
10.
C. C.
Su
, “
Explicit definitions of electric and magnetic fields in potentials and derivation of Maxwell’s equations
,”
Eur. J. Phys.
22
,
L5
L8
(
2001
).
11.
V. P.
Yakubov
, “
Special theory of relativity in electrodynamics
,”
Russ. Phys. J.
47
,
726
738
(
2004
).
12.
O. D.
Jefimenko
, “
Presenting electromagnetic theory in accordance with the principle of causality
,”
Eur. J. Phys.
25
,
287
296
(
2004
).
13.
G.
Rousseaux
, “
Lorenz or Coulomb in Galilean electromagnetism
?”
Europhys. Lett.
71
,
15
20
(
2005
).
14.
G.
Rousseaux
, “
On the physical meaning of the gauge conditions of classical electromagnetism: The hydrodynamics analogue viewpoint
,”
Ann. Fond. Louis Broglie
28
,
261
269
(
2003
), ⟨arxiv.org/abs/physics/0511047⟩.
15.
J. Clerk
Maxwell
,
A Treatise on Electricity and Magnetism
(
Dover
,
New York
,
1954
), Vols.
I
and
II
; originally published in 1873.
16.
Y.
Pierseaux
and
G.
Rousseaux
, “
Les structures fines de l’ électromagnétisme classique et de la relativité restreinte
,” ⟨arxiv.org/abs/physics/0601023⟩.
17.
J.
Earman
,
World Enough and Space-Time, Absolute versus Relational Theories of Space and Time
(
MIT Press
,
Cambridge, MA
,
1989
).
18.
R.
Rynasiewicz
, “
Field unification in the Maxwell–Lorentz theory with absolute space
,”
Philos. Sci.
70
,
1063
1072
(
2003
) or ⟨philsci-archive.pitt.edu/archive/00001096⟩.
19.
F. J.
Dyson
, “
Feynman’s proof of the Maxwell equations
,”
Am. J. Phys.
58
,
209
211
(
1990
).
20.
H. R.
Brown
and
P. R.
Holland
, “
The Galilean covariance of quantum mechanics in the case of external fields
,”
Am. J. Phys.
67
,
204
214
(
1999
).
21.
A.
Vaidya
and
C.
Farina
, “
Can Galilean mechanics and full Maxwell equations coexist peacefully
?”
Phys. Lett. A
153
,
265
267
(
1991
).
22.
H. R.
Brown
and
P. R.
Holland
, “
The non-relativistic limit of the Maxwell and Dirac equations: The role of Galilean and gauge invariance
,”
Stud. Hist. Philos. Mod. Phys.
34
,
161
87
(
2003
).
23.
P. G.
de Gennes
,
Superconductivity of Metals and Alloys
(
Benjamin
,
New York
,
1966
).
24.
M.
Greiter
, “
Is electromagnetic gauge invariance spontaneously violated in superconductors
?”
Ann. Phys. (N.Y.)
319
,
217
249
(
2005
).
25.
H. A.
Lorentz
, “
Remarque au sujet de l’induction unipolaire
,”
Archives néerlandaises des sciences exacts et naturelles
9
,
380
(
1904
).
26.
H.
Minkowski
, “
Die Grundgleichungen für die elektromagnetischen Vorgange in bewegten Körpern
,” Nachr. Ges. Wiss. Gottingen, pp.
53
111
(
1908
);
H.
Arzeliès
,
Milieux Conducteurs ou Polarisables en Mouvement, Etudes Relativistes
(
Gauthier-Villars
,
Paris
,
1959
).
27.
A.
Einstein
and
J.
Laub
, “
Über die elektromagnetischen Grundgleichungen für bewegte Körper
,”
Ann. Phys.
26
,
532
539
(
1908
).
28.
W. K. H.
Panofsky
and
M.
Phillips
,
Classical Electricity and Magnetism
(
Addison-Wesley
,
New York
,
1955
).
29.
W. C.
Roentgen
, “
Über die durch Bewegung eines im homogenen elektrischen Felde befindlichen Dielectricums hervorgerufene elektrodynamische Kraft
,”
Ann. Phys.
35
,
264
270
(
1888
).
30.
A.
Eichenwald
, “
Über die magnetischen Wirkungen bewegter Körper im elektrostatischen Felde
,”
Ann. Phys.
11
,
1
30
(
1903
).
31.
H. A.
Wilson
, “
On the electric effect of rotating a dielectric in a magnetic field
,”
Philos. Trans. R. Soc. London
204
,
121
137
(
1904
).
32.
M.
Wilson
and
H. A.
Wilson
, “
On the electric effect of rotating a magnetic insulator in a magnetic field
,”
Philos. Trans. R. Soc. London, Ser. A
89
,
99
106
(
1913
).
33.
J. B.
Hertzberg
,
S. R.
Bickman
,
M. T.
Hummon
,
D.
Krause
,
S. K.
Peck
, and
L. R.
Hunter
, “
Measurement of the relativistic potential difference across a rotating dielectric cylinder
,”
Am. J. Phys.
69
,
648
654
(
2001
).
34.
F. T.
Trouton
, “
The results of an electrical experiment involving the relative motion of the earth and ether
,”
Trans. Royal Dublin Soc.
7
,
379
384
(
1902
).
35.
F. T.
Trouton
and
H. R.
Noble
, “
The mechanical forces acting on a charged electric condenser moving through space
,”
Philos. Trans. R. Soc. London
202
,
165
181
(
1903
).
36.
H. C.
Hayden
, “
High sensitivity Trouton–Noble experiment
,”
Rev. Sci. Instrum.
65
,
788
792
(
1994
).
37.
O. D.
Jefimenko
, “
The Trouton–Noble paradox
,”
J. Phys. A
32
,
3755
3762
(
1999
).
38.
E.
Carvallo
, “
L’électromagnétisme et le principe de relativité
,”
Compt. Rend.
173
,
1155
1157
(
1921
);
E.
Carvallo
, “
Le problème de la relativité dans les diélectriques
,”
Compt. Rend.
173
,
1461
1463
(
1921
).
39.
A.
Einstein
, “
Ether and the Theory of Relativity: An Address delivered on 5 May 1920, in the University of Leyden
,” in
Sidelights on Relativity
(
Dover
,
New York
,
1922
).
40.
O.
Darrigol
, “
The electrodynamics of moving bodies from Faraday to Hertz
,”
Centaurus
36
,
245
360
(
1993
);
O.
Darrigol
, “
Emil Cohn’s electrodynamics of moving bodies
,”
Am. J. Phys.
63
,
908
915
(
1995
).
41.
W.
Pauli
,
Theory of Relativity
(
Dover
,
New York
,
1981
), pp.
127
130
.
42.
A.
Einstein
, “
Zür Elektrodynamik bewegter Körper
,”
Ann. Phys.
17
,
891
921
(
1905
);
A. I.
Miller
,
Albert Einstein’s Special Theory of Relativity
(
Addison-Wesley
,
New York
,
1981
).
43.
Einstein used the Heaviside–Hertz formulation, whereas Poincaré used the Riemann–Lorenz formulation in his relativity article (Ref. 16 of this article).
44.
J. D.
Norton
, “
Einstein’s investigation of Galilean covariant electrodynamics prior to 1905
,”
Arch. Hist. Exact Sci.
59
,
45
105
(
2004
);
G.
Hon
and
B. R.
Goldstein
, “
How Einstein made asymmetry disappear: symmetry and relativity in 1905
,”
Arch. Hist. Exact Sci.
59
,
437
544
(
2005
).
45.
W.
Pauli
,
Electrodynamics
(
Dover
,
New York
,
2000
), pp.
106
108
.
46.
G. H.
Keswani
and
C. W.
Kilmister
, “
Intimations of relativity: Relativity before Einstein
,”
Br. J. Philos. Sci.
34
,
343
354
(
1983
).
47.
J. Clerk
Maxwell
, “
On the induction of electric currents in an infinite plane sheet of uniform conductivity
,” in
The Scientific Papers of James Clerk Maxwell
(
Dover Phoenix Editions
,
2003
), Vol.
II
, pp.
286
296
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.