It is possible to tell if two or more eigenvalues of a matrix are equal without calculating the eigenvalues. We use this property to detect (avoided) crossings in the spectra of Hamiltonians representable by matrices. This approach provides a pedagogical introduction to (avoided) crossings, is capable of handling realistic Hamiltonians analytically, and offers a way to visualize crossings that is sometimes superior to that provided by the spectrum directly. We illustrate the method using the Breit-Rabi Hamiltonian to describe the hyperfine-Zeeman structure of the ground-state hydrogen atom in a uniform magnetic field.

1.
J. R.
Walkup
,
M.
Dunn
,
D. K.
Watson
, and
T. C.
Germann
, “
Avoided crossings of diamagnetic hydrogen as functions of magnetic field strength and angular momentum
,”
Phys. Rev. A
58
,
4668
4682
(
1998
).
2.
D. R.
Yarkony
, “
Diabolical conical intersections
,”
Rev. Mod. Phys.
68
,
985
1013
(
1996
).
3.
A.
Sibille
,
J. F.
Palmier
, and
F.
Laruelle
, “
Zener interminiband resonant breakdown in superlattices
,”
Phys. Rev. Lett.
80
,
4506
4509
(
1998
).
4.
J.
Wiersig
, “
Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities
,”
Phys. Rev. Lett.
97
,
253901
1
(
2006
).
5.
G.
Moruzzi
,
The Hanle Effect and Level-Crossing Spectroscopy
(
Kluwer Academic
, Norwell,
1991
).
6.
J.
von Neumann
and
E. P.
Wigner
, “
Behaviour of eigenvalues in adiabatic processes
,”
Z. Phys.
30
,
467
470
(
1929
).
7.
M. V.
Berry
and
M.
Wilkinson
, “
Diabolical points in the spectra of triangles
,”
Proc. R. Soc. London, Ser. A
392
,
15
43
(
1984
).
8.
E. A.
Yuzbashyan
,
W.
Happer
,
B. A.
Altshuler
, and
S. B.
Sastry
, “
Extracting hidden symmetry from the energy spectrum
,”
J. Phys. A
36
,
2577
2588
(
2003
).
9.
F.
Haake
,
Quantum Signatures of Chaos
(
Springer
, Berlin,
2006
).
10.
W. D.
Heiss
and
W.-H.
Steeb
, “
Avoided level crossings and Riemann sheet structure
,”
J. Math. Phys.
32
,
3003
3007
(
1991
).
11.
V. V.
Stepanov
and
G.
Muller
, “
Integrability and level crossing manifolds in a quantum Hamiltonian system
,”
Phys. Rev. E
58
,
5720
5726
(
1998
).
12.
T. J.
Davis
, “
2D magnetic traps for ultra-cold atoms: A simple theory using complex numbers
,”
Eur. Phys. J. D
18
,
27
36
(
2002
).
13.
I.
Freund
, “
Coherency matrix description of optical polarization singularities
,”
J. Opt. Soc. Am. A
6
,
S229
S234
(
2004
).
14.
M.
Bhattacharya
and
C.
Raman
, “
Detecting level crossings without looking at the spectrum
,”
Phys. Rev. Lett.
97
,
253901
1
(
2006
).
15.
M.
Bhattacharya
and
C.
Raman
, “
Detecting level crossings without solving the Hamiltonian I. Mathematical background
,”
Phys. Rev. A
75
,
033405
1
(
2007
).
16.
M.
Bhattacharya
and
C.
Raman
, “
Detecting level crossings without solving the Hamiltonian II. Applications to atoms and molecules
,”
Phys. Rev. A
75
,
033406
1
(
2007
).
17.
P. D.
Lax
,
Linear Algebra
(
Wiley
, New York,
1997
).
18.
S.
Basu
,
R.
Pollack
, and
M. F.
Roy
,
Algorithms in Real Algebraic Geometry
(
Springer-Verlag
, Berlin,
2003
).
19.
In MATHEMATICA the Discriminant is defined in terms of the Resultant function.
20.
R. S.
Dickson
and
J. A.
Weil
, “
Breit-Rabi Zeeman states of atomic hydrogen
,”
Am. J. Phys.
59
,
125
129
(
1991
).
21.
G.
Breit
and
I. I.
Rabi
, “
Measurement of nuclear spin
,”
Phys. Rev.
38
,
2082
2083
(
1931
).
22.
E.
Arimondo
,
M.
Inguscio
, and
P.
Violino
, “
Experimental determinations of the hyperfine structure in the alkali atoms
,”
Rev. Mod. Phys.
49
,
31
75
(
1977
).
23.
E.
Merzbacher
,
Quantum Mechanics
(
Wiley
, New York,
1970
).
24.
J. L.
Wood
,
A.-M.
Oros-Peusquens
,
R.
Zaballa
,
J. M.
Allmond
, and
W. D.
Kulp
, “
Triaxial rotor model for nuclei with independent inertia and electric quadrupole tensors
,”
Phys. Rev. C
70
,
024308
1
(
2004
).
25.
J.
Brown
and
A.
Carrington
,
Rotational Spectroscopy of Diatomic Molecules
(
Cambridge U.P.
, Cambridge,
2003
).
26.
S.
Kais
,
C.
Wenger
, and
Qi
Wei
, “
Quantum criticality at the infinite complete basis set limit: A thermodynamic analog of the Yang and Lee theorem
,”
Chem. Phys. Lett.
423
,
45
49
(
2006
).
27.
P.
Serra
,
J. P.
Neirotti
, and
S.
Kais
, “
Finite-size scaling approach for the Schrödinger equation
,”
Phys. Rev. A
57
,
R1481
1484
(
1998
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.