The oscillatory flow of water draining from an upside-down plastic bottle with a thin pipe attached to its head is studied as an example of a dissipative structure generated under far-from-equilibrium conditions. Mode bifurcation was observed in the water/air flow: no flow, oscillatory flow, and counter flow were found when the inner diameter of the thin pipe was changed. The modes are stable against perturbations. A coupled two-bottle system exhibits either in-phase or anti-phase self-synchronization. These characteristic behaviors imply that the essential features of the oscillatory flow in a single bottle system can be described as a limit-cycle oscillation.

1.
L.
Glass
,
M. R.
Guevara
, and
A.
Shrier
, “
Bifurcation and chaos in a periodically stimulated cardiac oscillator
,”
Physica D
7
,
89
101
(
1983
).
2.
H. M.
Smith
, “
Synchronous flashing of fireflies
,”
Science
82
,
151
152
(
1935
).
3.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Theia
, New York,
2003
).
4.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge U. P.
, Cambridge,
2001
).
5.
R. H.
Day
and
P.
Chen
,
Nonlinear Dynamics and Evolutionary Economics
(
Oxford U. P.
, New York,
1993
).
6.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
, New York,
1980
).
7.
H.
Haken
,
Synergetics
(
Springer
, Berlin,
1977
).
8.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
, New York,
1977
).
9.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
, Berlin,
1984
).
10.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern-formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1112
(
1993
).
11.
E. N.
Lorenz
,
The Essence of Chaos
(
Univ. of Washington
, Seattle,
1993
).
12.
K.
Yoshikawa
,
N.
Oyama
,
M.
Shoji
, and
S.
Nakata
, “
Use of a saline oscillator as a simple nonlinear dynamic system: Rhythms, bifurcation, and entrainment
,”
Am. J. Phys.
59
,
137
141
(
1991
).
13.
M.
Okamura
and
K.
Yoshikawa
, “
Rhythm in a saline oscillator
,”
Phys. Rev. E
61
,
2445
2452
(
2000
).
14.
H.
Kitahata
,
A.
Yamada
, and
S.
Nakata
, “
Mode bifurcation by pouring water into a cup
,”
J. Chem. Phys.
119
,
4811
4816
(
2003
).
15.
C.
Clanet
and
G.
Searby
, “
On the glug-glug of ideal bottles
,”
J. Fluid Mech.
510
,
145
168
(
2004
).
16.
R.
Shaw
,
The Dripping Faucet as a Model Chaotic System
(
Aerial
, Santa Cruz,
1984
).
17.
C.
Ellegaard
,
A. E.
Hansen
,
A.
Haaning
,
K.
Hansen
,
A.
Marcussen
,
T.
Bohr
,
J. L.
Hansen
, and
S.
Watanabe
, “
Creating corners in kitchen sinks
,”
Nature (London)
392
,
767
768
(
1998
).
18.
I.
Aihara
,
S.
Horai
,
H.
Kitahata
,
K.
Aihara
, and
K.
Yoshikawa
, “
Dynamical calling behaviors experimentally observed in Japanese tree frogs (Hyla japonica)
,” IEICE Trans. (in press).
19.
A.
Takamatsu
,
R.
Tanaka
,
H.
Yamada
,
T.
Nakagaki
,
T.
Fujii
, and
I.
Endo
, “
Spatio-temporal symmetry in rings of coupled biological oscillators of physarum plasmodium
,”
Phys. Rev. Lett.
87
,
078102
1
(
2001
).
20.
We used ImageJ, http://rsb.info.nih.gov/ij/.
21.
E. D.
Schneider
and
D.
Sagan
,
Into the Cool
(
Univ. of Chicago
, Chicago,
2005
).
22.
M.
Yoshimoto
,
K.
Yoshikawa
, and
Y.
Mori
, “
Coupling among 3 chemical oscillators: Synchronization, phase death, and frustration
,”
Phys. Rev. E
47
,
864
874
(
1993
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.