Gamow’s tunneling formula is inverted and the issue of the uniqueness of the solution is compared with the solution obtained by the method of Gel’fand and Levitan. Some insight is gained into the key differences between classical and quantum inverse scattering, which account for the fact that a potential can be uniquely determined in the latter but only to within a symmetry family in the former.

1.
E.
Merzbacher
, “
The early history of quantum tunneling
,”
Phys. Today
55
(
8
),
44
49
(
2002
).
2.
R. H.
Stuewer
, in
The Kaleidoscope of Science
, edited by
E.
Ullmann-Margalit
(
D. Reidel
,
Hingham
,
1986
), Vol.
1
;
J.
Mehra
and
H.
Rechenberg
,
The Historical Development of Quantum Theory
(
Springer-Verlag
,
Berlin
,
2000
), Vol.
6
, Part 1.
3.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
, 3rd Ed. (
Butterworth-Heinmann
,
London
,
1976
).
4.
F. G.
Tricomi
,
Integral Equations
(
Dover
,
New York
,
1985
).
5.
J. C.
Lazenby
and
D. J.
Griffiths
, “
Classical inverse scattering in one dimension
,”
Am. J. Phys.
48
,
432
436
(
1980
).
6.
I. M.
Gel’fand
and
B. M.
Levitan
, “
On the determination of a differential equation from its spectral function
,”
Am. Math. Soc. Transl.
1
,
253
304
(
1955
);
A. C.
Scott
,
F. Y. F.
Chu
, and
D.
McLaughlin
, “
The soliton: A new concept in applied science
,”
Proc. IEEE
61
,
1476
1483
(
1973
).
7.
P. G.
Drazin
and
R. S.
Johnson
,
Solitons: An Introduction
(
Cambridge U.P.
,
Cambridge, UK
,
1989
).
8.
N.
Zettili
,
Quantum Mechanics: Concepts and Applications
(
Wiley
,
New York
,
2001
).
9.

Given two kernels K1(x,y) and K2(x,y), by composition we mean the formation of a new kernel by K(x,y)=abK1(x,z)K2(z,y)dz.

10.
R. H.
Fowler
and
L.
Nordheim
, “
Electron emission in intense electric fields
,”
Proc. R. Soc. London, Ser. A
,
119
,
173
181
(
1928
).
11.
A. G.
Sitenko
,
Scattering Theory
(
Springer-Verlag
,
Berlin
,
1991
).
12.

We may generalize our aproach to solve the integral equation yaϕ(x)(xy)αdx=f(y), (0<α<1), which generalizes Eq. (27). The corresponding solution is ϕ(x)=sin(απ)πddxxaf(y)(yx)1αdy.

13.
M. W.
Cole
and
R. H.
Good
, “
Determination of the shape of a potential barrier from the tunneling transmission coefficient
,”
Phys. Rev. A
18
,
1085
1088
(
1978
).
14.
R.
Rydberg
, “
Graphische Darstellung einiger bandenspektroskopischer Ergebnisse
,”
Z. Phys.
73
,
376
385
(
1931
);
R.
Rydberg
, “
Über einige potentialkurven des Quecksilberhydrids
,”
Z. Phys.
80
,
514
524
(
1933
);
O.
Klein
, “
Zur Berechnung von Potentialkurven für Zweiatomige Moleküle mit Hilfe von Spektraltermen
,”
Z. Phys.
76
,
226
235
(
1932
);
A. L. G.
Rees
, “
The calculation of potential-energy curves from band-spectroscopic data
,”
Proc. Phys. Soc. London
59
,
998
1008
(
1947
).
15.
A. B.
Balantekin
,
S. E.
Koonin
, and
J. W.
Negele
, “
Inversion formula for the internucleus potential using subbarrier fusion cross sections
,”
Phys. Rev. C
28
,
1565
1569
(
1983
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.