Gamow’s tunneling formula is inverted and the issue of the uniqueness of the solution is compared with the solution obtained by the method of Gel’fand and Levitan. Some insight is gained into the key differences between classical and quantum inverse scattering, which account for the fact that a potential can be uniquely determined in the latter but only to within a symmetry family in the former.
REFERENCES
1.
E.
Merzbacher
, “The early history of quantum tunneling
,” Phys. Today
55
(8
), 44
–49
(2002
).2.
R. H.
Stuewer
, in The Kaleidoscope of Science
, edited by E.
Ullmann-Margalit
(D. Reidel
, Hingham
, 1986
), Vol. 1
;J.
Mehra
and H.
Rechenberg
, The Historical Development of Quantum Theory
(Springer-Verlag
, Berlin
, 2000
), Vol. 6
, Part 1.3.
L. D.
Landau
and E. M.
Lifshitz
, Mechanics
, 3rd Ed. (Butterworth-Heinmann
, London
, 1976
).4.
5.
J. C.
Lazenby
and D. J.
Griffiths
, “Classical inverse scattering in one dimension
,” Am. J. Phys.
48
, 432
–436
(1980
).6.
I. M.
Gel’fand
and B. M.
Levitan
, “On the determination of a differential equation from its spectral function
,” Am. Math. Soc. Transl.
1
, 253
–304
(1955
);A. C.
Scott
, F. Y. F.
Chu
, and D.
McLaughlin
, “The soliton: A new concept in applied science
,” Proc. IEEE
61
, 1476
–1483
(1973
).7.
P. G.
Drazin
and R. S.
Johnson
, Solitons: An Introduction
(Cambridge U.P.
, Cambridge, UK
, 1989
).8.
9.
Given two kernels and , by composition we mean the formation of a new kernel by .
10.
R. H.
Fowler
and L.
Nordheim
, “Electron emission in intense electric fields
,” Proc. R. Soc. London, Ser. A
, 119
, 173
–181
(1928
).11.
12.
We may generalize our aproach to solve the integral equation , , which generalizes Eq. (27). The corresponding solution is .
13.
M. W.
Cole
and R. H.
Good
, “Determination of the shape of a potential barrier from the tunneling transmission coefficient
,” Phys. Rev. A
18
, 1085
–1088
(1978
).14.
R.
Rydberg
, “Graphische Darstellung einiger bandenspektroskopischer Ergebnisse
,” Z. Phys.
73
, 376
–385
(1931
);R.
Rydberg
, “Über einige potentialkurven des Quecksilberhydrids
,” Z. Phys.
80
, 514
–524
(1933
);O.
Klein
, “Zur Berechnung von Potentialkurven für Zweiatomige Moleküle mit Hilfe von Spektraltermen
,” Z. Phys.
76
, 226
–235
(1932
);A. L. G.
Rees
, “The calculation of potential-energy curves from band-spectroscopic data
,” Proc. Phys. Soc. London
59
, 998
–1008
(1947
).15.
A. B.
Balantekin
, S. E.
Koonin
, and J. W.
Negele
, “Inversion formula for the internucleus potential using subbarrier fusion cross sections
,” Phys. Rev. C
28
, 1565
–1569
(1983
).© 2006 American Association of Physics Teachers.
2006
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.