Additional conserved quantities associated with an extra symmetry govern a wide variety of physical systems ranging from planetary motion to atomic spectra. We give a simple derivation of the hidden symmetry operator for the Dirac equation in a Coulomb field and show that this operator may be reduced to the one introduced by Johnson and Lippmann to include the spin degrees of freedom. This operator has been rarely discussed in the literature and has been neglected in recent textbooks on relativistic quantum mechanics and quantum electrodynamics.

1.
V.
Fock
, “
Zur theorie des wasserstffatoms
,”
Z. Phys.
98
,
145
154
(
1935
).
2.
V.
Bargman
, “
Zur theorie des wasserstffatoms
,”
Z. Phys.
99
,
168
188
(
1936
).
3.
W.
Pauli
, “
Uber des wasserstffatoms vom standpunkt der neuen quantummechanik
,”
Z. Phys.
36
,
336
363
(
1926
).
4.
J. P.
Dahl
and
Th.
Jorgensen
, “
On the Dirac-Kepler problem: The Johnson-Lippmann operator, supersymmetry and normal-mode representations
,”
Int. J. Quantum Chem.
53
,
161
181
(
1995
).
5.
H.
Goldstein
,
C.
Poole
, and
J.
Saiko
,
Classical Mechanics
, 3rd ed. (
Pearson Education
,
Delhi
,
2002
), pp.
103
106
.
6.
Arno
Bohm
,
Quantum Mechanics. Foundations and Applications
(
Springer-Verlag
, New York,
1993
).
7.
R. C.
O'Connell
and
K.
Jagannathan
, “
Illustrating dynamical symmetry in classical mechanics: The Laplace-Runge-Lenz vector revisited
,”
Am. J. Phys.
71
(
3
),
243
246
(
2003
).
8.
G.
Valent
, “
The hydrogen atom in electric and magnetic fields: Pauli's 1926 article
,”
Am. J. Phys.
71
(
2
),
171
175
(
2003
).
9.
A.
Sommerfield
,
Atombau und Spectralinien
(
Friedr
, Braunschweig,
1951
), Vol.
II
.
10.
T.
Yoshida
, “
Considerations on the precessing orbit via a rotating Laplace-Runge-Lenz vector
,”
Am. J. Phys.
55
(
12
),
1133
1136
(
1987
).
11.
T.
Yoshida
, “
Rotating Laplace-Runge-Lenz vector leading to two relativistic Kepler's equation
,”
Phys. Rev. A
38
,
19
25
(
1988
).
12.
J. P.
Dahl
, “
Physical origin of Runge-Lenz vector
,”
J. Phys. A
30
,
6831
6840
(
1997
).
13.
R. D.
Tangerman
and
J. A.
Tjon
, “
Exact supersymmetry in the nonrelativistic hydrogen atom
,”
Phys. Rev. A
48
,
1089
1092
(
1993
).
14.
C. V.
Sukumar
, “
Supersymmetry and the Dirac equation for a central Coulomb field
,”
J. Phys. A
18
,
L697
L701
(
1985
).
15.
M. H.
Johnson
and
B. A.
Lippmann
, “
Relativistic Kepler problem
,”
Phys. Rev.
78
,
329
(
1950
).
16.
L. C.
Biedenharn
, “
Remarks on the relativistic Kepler problem
,”
Phys. Rev.
126
,
845
851
(
1962
).
17.
H.
Katsura
and
H.
Aoki
,
Exact supersymmetry in the relativistic hydrogen atom in general dimensions - supercharge and generalized Johnson-Lippmann operator
, quant-ph/0410174.
18.
B. V.
Berestetskii
 et al.,
Quantum Electrodynamics
(
Nauka
, Moscow,
1968
), p.
149
.
19.
T. T.
Khachidze
and
A. A.
Khelashvili
, “
An `accidental' symmetry operator for the Dirac equation in the Coulomb potential
,”
Mod. Phys. Lett. A
20
,
2277
2282
(
2005
).
20.
E.
Witten
, “
Dynamical breaking of supersymmetry
,”
Nucl. Phys. B
188
,
513
554
(
1981
).
For more recent references see, for example, the monograph by
B. K.
Bagghi
,
Supersymmetry in Quantum and Classical Mechanics
(
Chapman and Hall/CRC
, Roca Raton,
2000
).
21.
A. A.
Stahlhofen
, “
Algebraic solutions of relativistic Coulomb problems
,”
Helv. Phys. Acta
70
,
372
386
(
1997
).
22.
A.
Kaku
,
Quantum Field Theory: A Modern Introduction
(
Oxford University Press
, Oxford,
1993
), p.
198
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.