We calculate the magnetic fields of cylindrical coils due to a surface current and a volume current and compare our theoretical results to measured magnetic fields of two coil types: single-layer solenoid and cylindrical thick coil by a simple experimental apparatus. Good agreement is found with the theoretical results.

1.
David J.
Griffiths
,
Introduction to Electrodynamics
(
Prentice Hall
,
Upper Saddle River, NJ
,
1999
), 3rd ed., pp.
227
228
.
2.
B. B.
Dasgupta
, “
Magnetic field due to a solenoid
,”
Am. J. Phys.
52
,
258
(
1984
).
3.
V.
Namias
, “
On the magnetic field due to a solenoid of arbitrary cross section
,”
Am. J. Phys.
53
,
588
(
1985
).
4.
K.
Fillmore
, “
Magnetic field of a noncircular solenoid
,”
Am. J. Phys.
53
,
782
783
(
1985
).
5.
O.
Espinosa
and
V.
Slusarenko
, “
The magnetic field of an infinite solenoid
,”
Am. J. Phys.
71
(
9
),
953
954
(
2003
).
6.
Edward M.
Purcell
,
Electricity and Magnetism
(
McGraw-Hill
,
New York
,
1985
), 2nd ed., pp.
226
231
.
7.
John D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1999
), 3rd ed., pp.
225
227
.
8.
C.
Chia
and
Y.
Wang
, “
The magnetic field along the axis of a long finite solenoid
,”
Phys. Teach.
40
,
288
289
(
2002
).
9.
J.
Farley
and
R. H.
Price
, “
Field just outside a long solenoid
,”
Am. J. Phys.
69
,
751
754
(
2001
).
10.
G. V.
Brown
and
L.
Flax
, “
Superposition of semi-infinite solenoids for calculating magnetic fields of thick solenoids
,”
J. Appl. Phys.
35
,
1764
1767
(
1964
).
11.
R. H.
Jackson
, “
Off-axis expansion solution of Laplace’s equation. Application to accurate and rapid calculation of coil magnetic fields
,”
IEEE Trans. Electron Devices
46
,
1050
1062
(
1999
).
12.
J. T.
Conway
, “
Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions
,”
IEEE Trans. Magn.
37
,
2977
2988
(
2001
).
13.
Daryl W.
Preston
and
Eric R.
Deitz
,
The Art of Experimental Physics
(
Wiley
,
New York
,
1991
), pp.
121
125
,
303
315
.
14.
C. G.
Deacon
and
H. C.
Clarke
, “
Use of a linear offset Hall effect transducer in student laboratory experiments to measure magnetic fields
,”
Am. J. Phys.
61
,
947
948
(
1993
).
15.
D.
Bishir
, “
A simple demonstration of the magnetic field of a solenoid
,”
Am. J. Phys.
64
,
1525
(
1996
).
16.
H. B.
Dwight
, “
The magnetic field of a circular cylindrical coil
,”
Philos. Mag.
11
,
948
957
(
1931
).
17.
M. W.
Garrett
, “
Axially symmetric systems for generating and measuring magnetic fields. Part I
,”
J. Appl. Phys.
22
,
1091
1107
(
1951
).
18.
A. I.
Rusinov
, “
High precision computation of a solenoid magnetic fields by Garett’s methods
,”
IEEE Trans. Magn.
30
,
2685
2688
(
1994
).
19.
Philip M.
Morse
and
Herman
Feshbach
,
Methods of Theoretical Physics, Part II
(
McGraw-Hill
,
New York
,
1953
), p.
1263
.
20.

The common notation for the Gauss hypergeometric function has the form F12(a,b;c;ξ) where a, b, and c are parameters.

21.
MATHEMATICA, ⟨http://www.wolfram.com⟩.
22.

The common notation for Struve functions is Hn(ξ).

23.
See EPAPS Document No. E-AJPIAS-74-021606 for the plots and tables for all measurements. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
24.
The Earth’s magnetic field for different locations can be determined at ⟨http://www.ngdc.noaa.gov/seg/geomag/magfield.shtml⟩.
25.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
,
New York
,
2000
), 6th ed..

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.