The statistical analysis of the eigenvalues of quantum systems has become an important tool in understanding the connections between classical and quantum physics. The statistical properties of the eigenvalues of a quantum system whose classical counterpart is integrable match those of random numbers. The eigenvalues of a chaotic classical system have statistical properties like those of the eigenvalues of random Hermitian matrices. The statistical properties of random numbers and eigenvalues of random Hermitian matrices are examined and the connection between these properties and the statistics of eigenvalues of quantum systems is illustrated, using the quantum standard map as an example. The relevance of these ideas to some problems in the theory of prime numbers is explored.

1.
See Wigner’s papers reprinted in
Statistical Theories of Spectra: Fluctuations
, edited by
C. E.
Porter
(
Academic
,
New York
,
1965
).
2.
R. U.
Haq
,
A.
Pandey
, and
O.
Bohigas
, “
Fluctuation properties of nuclear energy levels: Do theory and experiment agree?
,”
Phys. Rev. Lett.
48
,
1086
1089
(
1982
).
3.
M. V.
Berry
and
M.
Tabor
, “
Level clustering in the regular spectrum
,”
Proc. R. Soc. London, Ser. A
356
,
375
394
(
1977
).
4.
O.
Bohigas
,
M. J.
Giannoni
, and
C.
Schmit
, “
Characterization of chaotic quantum spectra and universality of level fluctuation laws
,”
Phys. Rev. Lett.
52
,
1
4
(
1984
).
5.
C. E.
Porter
, “
Fluctuations of quantal spectra
,” in
Statistical Theories of Spectra: Fluctuations
, edited by
C. E.
Porter
(
Academic
,
New York
,
1965
), pp.
2
87
.
6.
A. M.
Odlyzko
, “
On the distribution of spacings between zeros of the zeta function
,”
Math. Comput.
48
,
273
308
(
1987
).
7.
Random number generators produce pseudorandom numbers, but I will ignore this distinction.
8.
Systems with time-reversal symmetry and spin-12 interactions have Hamiltonians that can be represented by real quaternion matrices, but I will not consider these here.
9.
M. L.
Mehta
,
Random Matrices
(
Elsevier Academic
,
San Diego
,
2004
), 3rd ed., pp.
33
49
.
10.
Fritz
Haake
,
Quantum Signatures of Chaos
(
Springer-Verlag
,
Berlin
,
2001
), 2nd ed., pp.
48
51
.
11.
E. P.
Wigner
, “
Statistical properties of real symmetric matrices with many dimensions
,”
Canadian Mathematical Congress Proceedings
(
University of Toronto Press
,
Toronto, Canada
,
1957
), pp.
174
184
. Reprinted in Ref. 1.
12.
Reference 10, pp.
123
124
.
13.
Reference 10, pp.
69
78
.
14.
Reference 10, pp.
51
54
.
15.
Boris V.
Chirikov
, “
A universal instability of many dimensional oscillator systems
,”
Phys. Rep.
52
,
263
379
(
1979
).
16.
Todd
Timberlake
, “
A computational approach to teaching conservative chaos
,”
Am. J. Phys.
72
,
1002
1007
(
2004
).
17.
See p.
646
of Ref. 9.
18.
Arnd
Bäcker
, “
Numerical aspects of eigenvalue and eigenfunction computations for chaotic quantum systems
,” in
The Mathematical Aspects of Quantum Maps
, edited by
M. D.
Esposti
and
S.
Graffi
(
Springer-Verlag
,
New York
,
2003
), pp.
91
144
.
19.
David L.
Kaufman
,
Ioan
Kosztin
, and
Klaus
Schulten
, “
Expansion method for stationary states of quantum billiards
,”
Am. J. Phys.
67
,
133
141
(
1999
).
20.
C. F.
Gauss
, Letter to Encke dated 24 December 1849 in
Werke
, Vol.
II
(Gedruckt in der Dieterichschen Universitats Druckerei) (
W. F. Kaestner
,
1863
), pp.
444
447
. The relevant portion of this letter is quoted in Ref. 26, pp.
53
54
.
21.
J.
Hadamard
, “
Sur la distribution des zéros de la fonctionζ(s) et ses conséquences arithmétiques
,”
Bull. Soc. Math. France
24
,
199
220
(
1896
);
C. J.
de la Vallée Poussin
, “
Recherces analytiques sur la théorie des nombres premiers
,”
Ann. Soc. Sci. Bruxelles
20
,
183
256
(
1896
).
22.
G.
Mussardo
, “
The quantum mechanical potential for the prime numbers
,” cond-mat/9712010.
23.
For a detailed discussion of the Riemann zeta function see
H. M.
Edwards
,
Riemann’s Zeta Function
(
Dover
,
New York
,
2001
).
24.
L.
Euler
, “
Variae observationes cira series infinitas
,”
Comm. Acad. Sci. Petropolitanae
9
,
160
188
(
1737
). Euler’s proof of this formula is also presented in Ref. 26, pp. 102–107.
25.
Julian
Havil
,
Gamma: Exploring Euler’s Constant
(
Princeton U.P.
,
Princeton, NJ
,
2003
), pp.
249
254
.
26.
John
Derbyshire
,
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
(
Plume
,
New York
,
2004
).
27.
Dan
Rockmore
,
Stalking the Riemann Hypothesis
(
Pantheon
,
New York
,
2005
);
Marcus
du Sautoy
,
The Music of the Primes
(
Harper Perennial
,
New York
,
2004
).
28.
See EPAPS Document No. E-AJPIAS-74-019606 for a MATHEMATICA notebook containing code to carry out the computations described in this article. This notebook can be found at ⟨fsweb.berry.edu/academic/mans/ttimberlake/rmatrix/⟩. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
29.
Hans-Jürgen
Stöckmann
,
Quantum Chaos: An Introduction
(
Cambridge U.P.
,
New York
,
1999
);
Linda E.
Reichl
,
The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations
(
Springer-Verlag
,
New York
,
2004
), 2nd ed.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.