The angular momentum of a steady, axially symmetric distribution of electromagnetic fields is shown to be expressible as Lem=dQr×A, where dQ is an element of moving charge at position r and A is the local vector potential. This result, which is valid for relativistic motion, gives an easy way of calculating the angular momentum of symmetric distributions of charges or currents. A consequence of this result is that in the nonrelativistic limit, the magnetic energy of the distribution can be expressed solely in terms of the angular momentum Lem and the angular velocity of the rotating system, k̂ω, as Umag=12(k̂ω)Lem. This result is applied to three uniform, nonrelativistic, spinning charge distributions: a cylindrical shell, a spherical shell, and a solid sphere.

1.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
, Menlo Park, CA,
1970
), Vol.
II
, Chaps. 26–28.
2.
P.
Lorrain
,
D. R.
Corson
, and
D. R.
Lorrain
,
Electromagnetic Fields and Waves
(
Freeman
, New York,
1988
), 3rd ed.
3.
M. H.
Nayfeh
and
M. K.
Brussel
,
Electricity and Magnetism
(
Wiley
, New York,
1985
).
4.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
, New York,
1975
), 2nd ed.
5.
J. R.
Reitz
,
F. J.
Milford
, and
R. W.
Christy
,
Foundations of Electromagnetic Theory
(
Addison-Wesley
, Reading, MA,
1979
), 3rd ed.
6.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
Prentice Hall
, Englewood Cliffs, NJ,
1981
).
7.
J. B.
Marion
,
Classical Electromagnetic Radiation
(
Academic
, New York,
1980
), 2nd ed.
8.
F. E.
Low
,
Classical Field Theory
(
Wiley
, New York,
1997
), Sec. 2.6.
9.
W.
Greiner
,
Classical Electrodynamics
(
Springer
, New York,
1998
).
10.
J. M.
Eisenberg
and
W.
Greiner
,
Nuclear Theory: Excitation Mechanisms
(
North Holland
, Amsterdam,
1988
), 3rd ed., Vol.
2
.
11.
J. S.
Marsh
, “
Magnetic and electric fields of rotating charge distributions
,”
Am. J. Phys.
50
(
1
),
51
53
(
1982
).
12.
H. P.
Siegel
, “
Inadequacy of the gyromagnetic theorem
,”
Am. J. Phys.
44
(
4
),
344
347
(
1976
).
13.
B. R.
Casserberg
, “
Electromagnetic momentum introduced simply
,”
Am. J. Phys.
50
(
5
),
425
416
(
1982
).
14.
G. R.
Fowles
, “
Momentum conservation and the vector potential of moving charges
,”
Am. J. Phys.
48
(
9
),
779
780
(
1980
).
15.
E.
Corinaldesi
, “
Angular momentum of a static electromagnetic field
,”
Am. J. Phys.
48
(
1
),
83
84
(
1980
).
16.
N.
Gauthier
, “
A Newton-Faraday approach to electromagnetic energy and angular momentum storage in an electromechanical system
,”
Am. J. Phys.
70
(
10
),
1034
1038
(
2002
).
17.
A. S.
de Castro
, “
Electromagnetic angular momentum for a rotating charged shell
,”
Am. J. Phys.
59
(
2
),
180
181
(
1991
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.