We demonstrate the control of chaos in a nonlinear circuit constructed from readily available electronic components. Control is achieved using recursive proportional feedback, which is applicable to chaotic dynamics in highly dissipative systems and can be implemented using experimental data in the absence of model equations. The application of recursive proportional feedback to a simple electronic oscillator provides an undergraduate laboratory problem for exploring proportional feedback algorithms used to control chaos.

1.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Perseus Books
,
Cambridge, MA
,
1994
).
2.
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
, “
Controlling chaos
,”
Phys. Rev. Lett.
64
(
11
),
1196
1199
(
1990
).
3.
F. J.
Romeiras
,
C.
Grebogi
,
E.
Ott
, and
W. P.
Dayawansa
, “
Controlling chaotic dynamical systems
,”
Physica D
58
,
165
192
(
1992
).
4.
K.
Ogata
,
Modern Control Engineering
(
Prentice Hall
,
Upper Saddle River, NJ
,
1997
), 3rd ed.
5.
D. J.
Gauthier
, “
Resource letter: CC-1: Controlling chaos
,”
Am. J. Phys.
71
,
750
759
(
2003
).
6.
W. L.
Ditto
,
S. N.
Rausseo
, and
M. L.
Spano
, “
Experimental control of chaos
,”
Phys. Rev. Lett.
65
,
3211
2314
(
1990
).
7.
J.
Starrett
and
R.
Tagg
, “
Control of a chaotic parametrically driven pendulum
,”
Phys. Rev. Lett.
66
,
1974
1977
(
1995
).
8.
J.
Singer
,
Y.-Z.
Wang
, and
H. H.
Bau
, “
Controlling a chaotic system
,”
Phys. Rev. Lett.
66
,
1123
1125
(
1991
).
9.
E. R.
Hunt
, “
Stabilizing high-period orbits in a chaotic system: The diode resonator
,”
Phys. Rev. Lett.
67
,
1953
1955
(
1991
).
10.
R.
Roy
,
T.
Murphy
, Jr.
,
T. D.
Majer
,
Z.
Gills
, and
E. R.
Hunt
, “
Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system
,”
Phys. Rev. Lett.
68
,
1259
1260
(
1992
).
11.
P.
Parmananda
,
P.
Sherard
,
R. W.
Rollins
, and
H. D.
Dewald
, “
Control of chaos in an electrochemical cell
,”
Phys. Rev. E
47
,
R3003
R3006
(
1993
).
12.
P.
Parmananda
,
R. W.
Rollins
,
P.
Sherard
, and
H. D.
Dewald
, “
Recursive proportional-feedback and its use to control chaos in an electrochemical system
,” in
Proceedings of the 2nd Conference on Experimental Chaos
, edited by
W.
Ditto
,
L.
Pecora
,
S.
Vohra
,
M.
Shlesinger
, and
M.
Spano
(
World Scientific
,
River Ridge, NJ
,
1995
), pp.
304
316
.
13.
A.
Garfinkel
,
M. L.
Spano
,
W. L.
Ditto
, and
J. N.
Weiss
, “
Controlling cardiac chaos
,”
Science
257
,
1230
1235
(
1992
).
14.
R. J.
Wiener
,
D. C.
Dolby
,
G. C.
Gibbs
,
B.
Squires
,
T.
Olsen
, and
A. M.
Smiley
, “
Control of chaotic pattern dynamics in Taylor vortex flow
,”
Phys. Rev. Lett.
83
,
2340
2343
(
1999
).
15.
P.
Kolodner
,
G.
Flätgen
, and
I. G.
Kevrekidis
, “
Controlling dispersive chaos in binary-fluid convection
,”
Phys. Rev. Lett.
83
,
730
733
(
1999
).
16.
G. L.
Baker
, “
Control of the chaotic driven pendulum
,”
Am. J. Phys.
63
,
832
838
(
1995
).
17.
U.
Dressler
and
G.
Nitsche
, “
Controlling chaos using time delay coordinates
,”
Phys. Rev. Lett.
68
,
1
4
(
1992
).
18.
B.
Peng
,
V.
Petrov
, and
K.
Showalter
, “
Controlling chemical chaos
,”
J. Phys. Chem.
95
,
4957
4959
(
1991
).
19.
R. W.
Rollins
,
P.
Parmananda
, and
P.
Sherard
, “
Controlling chaos in highly dissipative systems: A simple recursive algorithm
,”
Phys. Rev. E
47
,
R780
R783
(
1993
).
20.
C.
Flynn
and
N.
Wilson
, “
A simple method for controlling chaos
,”
Am. J. Phys.
66
,
730
735
(
1998
).
21.
Ned J.
Corron
,
Shawn D.
Pethel
, and
Buckley A.
Hopper
, “
A simple electronic system for demonstrating chaos control
,”
Am. J. Phys.
72
,
272
276
(
2004
).
22.
K.
Kiers
,
D.
Schmidt
, and
J. C.
Sprott
, “
Precision measurements in a simple electronic circuit
,”
Am. J. Phys.
72
,
503
509
(
2004
).
23.
J. C.
Sprott
, “
Simple chaotic systems and circuits
,”
Am. J. Phys.
68
,
758
763
(
2000
).
24.
J.-C.
Roux
,
R. H.
Simoyi
, and
H. L.
Swinney
, “
Observation of a strange attractor
,”
Physica D
8
,
257
266
(
1983
).
25.
R. W.
Rollins
and
E. R.
Hunt
, “
Exactly solvable model of a physical system exhibiting universal chaotic behavior
,”
Phys. Rev. Lett.
49
,
1295
1298
(
1982
).
26.

An interesting feature of the return map for the KSS circuit is that the thin 1D curve bends back near itself, creating closely separated lower and upper branches (see Fig. 9 in Ref. 22), which are not resolved by the scale used in Fig. 3. Thus there are two intersections of the map and the xn+1=xn line, which means there are two unstable period-one fixed points. We used recursive proportional feedback to stabilize the lower-branch fixed point. We were not able to gain control for the upper-branch fixed point, which suggests that it is not a saddle point. See Ref. 1 for details on classifying fixed points and Ref. 16 for a discussion of why a saddle point is needed for proportional feedback control.

27.

If the sequence is generated with the odd values of x corresponding to p=p0 and the even values corresponding to p=p0+Δp, then the up map consists of x2 plotted against x1, x4 plotted against x3, and so on; the back map consists of x3 plotted against x2, x5 plotted against x4, and so on.

28.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
29.
A concise, user-friendly text on LabVIEW and computer-based data acquisition is by
John
Essick
,
Advanced LabVIEW Labs
(
Prentice Hall
,
Upper Saddle River, NJ
,
1999
). It culminates with a chapter on developing a temperature control system that uses a proportional feedback algorithm that is appropriate for linear systems.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.