Quantum tic-tac-toe was developed as a metaphor for the counterintuitive nature of superposition exhibited by quantum systems. It offers a way of introducing quantum physics without advanced mathematics, provides a conceptual foundation for understanding the meaning of quantum mechanics, and is fun to play. A single superposition rule is added to the child’s game of classical tic-tac-toe. Each move consists of a pair of marks subscripted by the number of the move (“spooky” marks) that must be placed in different squares. When a measurement occurs, one spooky mark becomes real and the other disappears. Quantum tic-tac-toe illustrates a number of quantum principles including states, superposition, collapse, nonlocality, entanglement, the correspondence principle, interference, and decoherence. The game can be played on paper or on a white board. A Web-based version provides a refereed playing board to facilitate the mechanics of play, making it ideal for classrooms with a computer projector.

1.
The Web site for quantum tic-tac-toe is ⟨www.ParadigmPuzzles.com⟩.
2.
R.
Smullyan
,
Diagonalization and Self-Reference
(
Oxford University Press
,
New York
,
1994
).
3.
R.
Shankar
,
Principles of Quantum Mechanics
, 2nd ed. (
Plenum
,
New York
,
1994
).
4.
R.
Penrose
,
The Emperor’s New Mind
(
Oxford University Press
,
New York
,
1989
), Chap. 6, pp.
250
299
.
5.
V.
Buzek
,
M.
Hillery
, and
R. F.
Werner
, “
Optimal manipulations with qubits: Universal-NOT gate
,”
Phys. Rev. A
60
,
2626
(
1999
).
6.
R.
Feynman
,
The Feynman Lectures of Physics
(
Addison-Wesley
,
Reading, MA
,
1966
), Vol.
III
, Chap. 1, p.
1
.
7.
A.
Einstein
,
N.
Rosen
, and
B.
Podolsky
, “
Can quantum-mechanical description of physical reality be considered complete?
Phys. Rev.
47
,
777
780
(
1935
).
8.
A. D.
Aczel
,
Entanglement
(
Four Walls Eight Windows
,
New York
,
2001
), Chap. 11, p.
122
.
9.
N.
Gisin
,
A.
Stefanov
,
A.
Suarez
, and
H.
Zbinden
, “
Quantum correlations that are not sensitive to space and time
,” press communiqué, Geneva, 31 October
2001
; available at ⟨http://www.quantumphil.org/publications.htm⟩.
10.
J. S.
Bell
, “
On the problem of hidden variables in quantum mechanics
,”
Rev. Mod. Phys.
38
,
447
452
(
1966
).
11.
J. F.
Clauser
and
A.
Shimony
, “
Bell’s theorem: Experimental test and implications
,”
Rep. Prog. Phys.
41
,
1881
1927
(
1978
).
12.
A.
Aspect
,
J.
Dalibard
, and
G.
Roger
, “
Experimental test of Bell’s inequalities using time-varying analyzers
,”
Phys. Rev. Lett.
49
,
1804
1807
(
1982
).
13.
Reference 8, Chap. 18, p.
239
.
14.
E.
Joos
, “
Elements of environmental decoherence
,” in
Decoherence: Theoretical, Experimental, and Conceptual Programs
, edited by
P.
Blanchard
,
D.
Giulini
,
E.
Joos
,
C.
Kiefer
, and
I. O.
Stamatescu
(
Springer
,
Heidelberg
,
1999
).
15.
R.
Penrose
,
The Road to Reality: A Complete Guide to the Laws of the Universe
(
Knopf
,
New York
,
2004
), Chap. 29, p.
790
.
16.
L.
Diósi
, “
Models for universal reduction of macroscopic quantum fluctuations
,”
Phys. Rev. A
40
,
1165
1174
(
1989
).
17.
G. C.
Ghirardi
,
R.
Grassi
, and
A.
Rimini
, “
Continuous-spontaneous-reduction model involving gravity
,”
Phys. Rev. A
42
,
1057
1064
(
1990
).
18.
R.
Penrose
, “
On gravity’s role in quantum state reduction
,”
Gen. Relativ. Gravit.
28
,
581
600
(
1996
).
19.
The Many-Worlds Interpretation of Quantum Mechanics
, edited by
B. S.
De Witt
and
R. D.
Graham
(
Princeton University Press
,
1973
).
20.
W.-H.
Steeb
,
M.
Kloke
, and
B.-M.
Spieker
, “
Nonlinear Schrodinger equation: Painleve test, Backlund transformation and solutions
,”
J. Phys. A
17
,
L825
L829
(
1984
).
21.
R.
Penrose
, “
Gravity and state-vector reduction
,” in
Quantum Concepts in Space and Time
, edited by
R.
Penrose
and
C. J.
Isham
(
Oxford University Press
,
Oxford
,
1986
), pp.
129
146
.
22.
G.
Spencer-Brown
,
Laws of Form
(
Cognizer
,
Portland
,
1994
), p.
xv
. This work is more challenging than Ref. 23.
23.
D. R.
Hofstadter
,
Gödel, Escher, Bach: An Eternal Golden Braid
(
Vintage Books
,
New York
,
1980
).
24.
T. S.
Kuhn
,
The Structure of Scientific Revolutions
, 2nd ed. (
University of Chicago Press
,
Chicago
,
1970
).
25.
H.
Zbinden
,
J.
Brendel
,
N.
Gisin
, and
W.
Tittel
, “
Experimental test of nonlocal quantum correlation in relativistic configuration
,”
Phys. Rev. A
63
,
022111
(
2001
).
26.
A.
Goff
,
D.
Lehmann
, and
J.
Siegel
, “
Relativistically consistent faster-than-light (ftl) communication channel using self-referential quantum states
,” AIAA Paper 2002-4093,
38th Joint Propulsion Conference
,
Indianapolis, IN
, July 7–10,
2002
<www.aiaa.org>.
27.
A.
Goff
,
D.
Lehmann
, and
J.
Siegel
, “
Quantum tic-tac-toe, spooky-coins & magic-envelopes as metaphors for relativistic quantum physics
,” AIAA Paper 2002-3763,
38th Joint Propulsion Conference
,
Indianapolis, IN
, July 7–10,
2002
<www.aiaa.org>.
28.
J. S.
Bell
,
Speakable and Unspeakable in Quantum Mechanics
(
Cambridge University Press
,
Cambridge
,
1993
), Chap. 3, p.
27
.
29.
A.
Goff
, “
Practical time travel—Entangling the near future with the recent past
,” AIAA Paper 2005-32464, 41st
AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Tucson, AZ
, July 10–13,
2005
<www.aiaa.org>.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.