We describe an example of an exact, quantitative Jeopardy-type quantum mechanics problem. This problem type is based on the conditions in one-dimensional quantum systems that allow an energy eigenstate for the infinite square well to have zero curvature and zero energy when suitable Dirac delta functions are added. This condition and its solution are not often discussed in quantum mechanics texts and have interesting pedagogical consequences.

1.
J. H.
Larkin
,
J.
McDermott
,
D. P.
Simon
, and
H. A.
Simon
, “
Models of competence in solving physics problems
,”
Cogn. Sci.
4
,
317
345
(
1980
).
2.
M. T. H.
Chi
,
P. J.
Feltovich
, and
R.
Glaser
, “
Categorization and representation of physics problems by experts and novices
,”
Cogn. Sci.
5
,
121
152
(
1981
).
3.
E.
Cataloglu
and
R. W.
Robinett
, “
Testing the development of student conceptual and visualization understanding in quantum mechanics through the undergraduate career
,”
Am. J. Phys.
70
,
238
251
(
2002
).
4.
A.
Van Heuvelen
and
D. P.
Maloney
, “
Playing Physics Jeopardy
,”
Am. J. Phys.
67
,
252
256
(
1999
).
5.
A. P.
French
and
E. F.
Taylor
, “
Qualitative plots of bound state wave functions
,”
Am. J. Phys.
39
,
961
962
(
1971
).
6.
H. B.
Thacker
,
C.
Quigg
, and
J. L.
Rosner
, “
Inverse scattering approach to quarkonium potentials. I: One-dimensional formalism and methodology
,”
Phys. Rev. D
18
,
274
286
(
1978
).
7.
M.
Saito
and
T.
Hayashi
, “
An approach to inverse scattering problems
,”
Bioelectromagnetics (N.Y.)
3
,
73
80
(
1982
).
8.
J. M.
Blackledge
 et al, “
Quantitative solutions to the inverse scattering problem with applications to medical imaging
,”
Inverse Probl.
1
,
17
32
(
1985
).
9.
Inverse Methods: Interdisciplinary Elements of Methodology, Computation, and Applications
, edited by
B. H.
Jacobsen
,
K.
Mosegaard
, and
P.
Sibani
(
Springer
, New York,
1996
).
10.

Exceptions include the ground state of the periodic infinite well and the linear radial wave function from low-energy S-wave scattering from finite potentials.

11.
M.
Bowen
and
J.
Coster
, “
Infinite square well: A common mistake
,”
Am. J. Phys.
49
,
80
81
(
1980
).
12.
L. P.
Gilbert
,
M.
Belloni
,
M. A.
Doncheski
, and
R. W.
Robinett
, “
More on the asymmetric infinite square well: Energy eigenstates with zero curvature
,”
Eur. J. Phys.
26
,
815
825
(
2005
).
13.
M.
Belloni
,
M. A.
Doncheski
, and
R. W.
Robinett
, “
Zero-curvature solutions of the one-dimensional Schrödinger equation
,”
Phys. Scr.
72
,
122
126
(
2005
).
14.
P.
Senn
, “
Numerical solutions of the Schrödinger equation
,”
Am. J. Phys.
60
,
776
(
1992
).
15.
J.
Goldstein
,
C.
Lebiedzik
, and
R. W.
Robinett
, “
Supersymmetric quantum mechanics: Examples with Dirac δ functions
,”
Am. J. Phys.
62
,
612
618
(
1994
).
16.
J.-Y.
Marzin
and
J.-M.
Gérard
, “
Experimental probing of quantum-well eigenstates
,”
Phys. Rev. Lett.
62
,
2172
2175
(
1989
).
17.
G.
Salis
,
B.
Graf
,
K.
Ensslin
,
K.
Campman
,
K.
Maranowski
, and
A. C.
Gossard
, “
Wave function spectroscopy in quantum wells with tunable electron density
,”
Phys. Rev. Lett.
79
,
5106
5109
(
1997
).
18.

See www.arxiv.org/abs/quant-ph/0606196

19.
See EPAPS Document No. E-AJPIAS-74-016609 for the accompanying worksheets. This document can be reached via a direct link in the online article's HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
20.
S.-T.
Lin
and
J.
Smit
, “
Zero energy gaps for deep one-dimensional periodic potentials
,”
Am. J. Phys.
48
,
193
196
(
1980
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.