We compare the derivation of the dynamic Stark shift of hydrogenic energy levels in a classical framework with an adiabatically damped laser-atom interaction, which is equivalent to the Gell-Mann-Low-Sucher formula, and a treatment based on time-independent perturbation theory, with a second-quantized laser-atom dipole interaction Hamiltonian. Our analysis applies to a laser that excites a two-photon transition in atomic hydrogen or in a hydrogenlike ion with low nuclear charge number. Our comparisons serve to demonstrate why the dynamic Stark shift may be interpreted as a stimulated radiative correction and illustrates connections between the two derivations. The simplest of the derivations is the fully quantized approach. The classical and the second-quantized treatment are shown to be equivalent in the limit of large photon numbers.

1.
Th.
Udem
,
R.
Holzwarth
, and
T. W.
Hänsch
, “
Optical frequency metrology
,”
Nature (London)
416
,
233
237
(
2002
).
2.
G.
Saathoff
,
S.
Karpuk
,
U.
Eisenbarth
,
G.
Huber
,
S.
Krohn
,
R. Muñoz
Horta
,
S.
Reinhardt
,
D.
Schwalm
,
A.
Wolf
, and
G.
Gwinner
, “
Improved test of time dilation in special relativity
,”
Phys. Rev. Lett.
91
,
190403
1
(
2003
).
3.
M.
Niering
,
R.
Holzwarth
,
J.
Reichert
,
P.
Pokasov
,
Th.
Udem
,
M.
Weitz
,
T. W.
Hänsch
,
P.
Lemonde
,
G.
Santarelli
,
M.
Abgrall
,
P.
Laurent
,
C.
Salomon
, and
A.
Clairon
, “
Measurement of the Hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave Cesium fountain clock
,”
Phys. Rev. Lett.
84
,
5496
5499
(
2000
).
4.
The resonant case is described in detail in Ref. 5, pp.
291
298
, and in Refs 6 and 7.
5.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge University Press
, Cambridge,
1999
).
6.
U. D.
Jentschura
and
C. H.
Keitel
, “
Radiative corrections in laser-dressed atoms: Formalism and applications
,”
Ann. Phys. (N.Y.)
310
,
1
55
(
2004
).
7.
C.
Cohen-Tannoudji
, “
Atoms in strong resonant fields
,” in
Aux Frontières de la Spectroscopie Laser/Frontiers in Laser Spectroscopy
, edited by
R.
Balian
,
S.
Haroche
, and
S.
Liberman
(
North-Holland
, Amsterdam,
1975
), pp.
4
104
.
8.
B. R.
Mollow
, “
Power spectrum of light scattered by two-level systems
,”
Phys. Rev.
188
,
1969
1975
(
1969
).
9.
U. D.
Jentschura
,
J.
Evers
,
M.
Haas
, and
C. H.
Keitel
, “
Lamb shift of laser-dressed atomic states
,”
Phys. Rev. Lett.
91
,
253601
1
(
2003
).
10.
U. D.
Jentschura
,
J.
Evers
, and
C. H.
Keitel
, “
Radiative corrections to multi-level Mollow-type spectra
,”
Laser Phys.
15
,
37
45
(
2005
).
11.
J.
Evers
,
U. D.
Jentschura
, and
C. H.
Keitel
, “
Relativistic and radiative corrections to the Mollow spectrum
,”
Phys. Rev. A
70
,
062111
1
(
2004
).
12.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Atom-Photon Interactions
(
Wiley
, New York,
1992
). Part of our intention is to illustrate remarks in Chap. 2 (Complement E.2).
13.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley
, Reading, MA,
1994
).
14.
D. H.
Kobe
, “
Gauge invariant derivation of the AC Stark shift
,”
J. Phys. B
16
,
1159
1169
(
1983
).
15.
For a review see
P. J.
Mohr
,
G.
Plunien
, and
G.
Soff
, “
QED corrections in heavy atoms
,”
Phys. Rep.
293
,
227
369
(
1998
), Sec. II.
16.
M.
Gell-Mann
and
F.
Low
, “
Bound states in quantum field theory
,”
Phys. Rev.
84
,
350
354
(
1951
).
17.
J.
Sucher
, “
S-matrix formalism for level-shift calculations
,”
Phys. Rev.
107
,
1448
1449
(
1957
).
18.
See pp.
9
13
and 54–55 of Ref 5.
19.
W.
Kuhn
and
J.
Strnad
,
Quantenfeldtheorie
(
Vieweg
, Wiesbaden, Germany,
1995
). The electric field operator in the Schrödinger and Heisenberg pictures are given in Eqs. (4.3.3) and (4.3.4) on p.
104
of Ref. 18. This book also contains an elucidating discussion on uncertainty relations for measurements of the electric and magnetic field strengths at equal times and spatial coordinates.
20.
K.
Pachucki
, “
Simple derivation of helium Lamb shift
,”
J. Phys. B
31
,
5123
5133
(
1998
).
21.
B. R.
Holstein
, “
Effective interactions and the hydrogen atom
,”
Am. J. Phys.
72
,
333
344
(
2004
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.