We consider a clock paradox where an observer leaves an inertial frame, is accelerated, and after an arbitrary trip returns. We discuss a simple equation that gives an explicit relation in dimensions between the time elapsed in the inertial frame and the acceleration measured by the accelerating observer during the trip. A non-closed trip with respect to an inertial frame appears closed with respect to another suitable inertial frame. We use this observation to define the differential aging as a function of proper time. The reconstruction problem of special relativity is discussed and it is shown that its solution would allow the construction of an inertial clock.
Topics
Special relativity
REFERENCES
2.
G.
Holton
, “Resource letter SRT1 on special relativity theory
,” Am. J. Phys.
30
, 462
–469
(1962
).3.
H. Arzelies, Relativistic Kinematics (Pergamon, Oxford, 1966).
4.
L. Marder, Time and the Space-Traveller (University of Pennsylvania Press, Philadelphia, 1971).
5.
G. D.
Scott
, “On solutions of the clock paradox
,” Am. J. Phys.
27
, 580
–584
(1959
).6.
G.
Builder
, “Resolution of the clock paradox
,” Am. J. Phys.
27
, 656
–658
(1959
).7.
R. H.
Romer
, “Twin paradox in special relativity
,” Am. J. Phys.
27
, 131
–135
(1959
).8.
A.
Schild
, “The clock paradox in relativity theory
,” Am. Math. Monthly
66
, 1
–18
(1959
).9.
C. A.
Hurst
, “Acceleration and the ‘clock paradox,’
” J. Austral. Math. Soc.
2
, 120
–121
(1961
/1962).10.
H.
Lass
, “Accelerating frames of reference and the clock paradox
,” Am. J. Phys.
31
, 274
–276
(1963
).11.
W. G.
Unruh
, “Parallax distance, time, and the twin ‘paradox,’
” Am. J. Phys.
49
, 589
–592
(1981
).12.
S. P.
Boughn
, “The case of identically accelerated twins
,” Am. J. Phys.
57
, 791
–793
(1989
).13.
E.
Eriksen
and O/.
Grøn
, “Relativistic dynamics in uniformly accelerated reference frames with application to the clock paradox
,” Eur. J. Phys.
11
, 39
–44
(1990
).14.
E. A.
Desloge
and R. J.
Philpott
, “Comment on ‘The case of the identically accelerated twins,’ by S. P. Boughn
,” Am. J. Phys.
59
, 280
–281
(1991
).15.
T. A.
Debs
and L. G.
Redhead
, “The twin ‘paradox’ and the conventionality of simultaneity
,” Am. J. Phys.
64
, 384
–392
(1996
).16.
R. P.
Gruber
and R. H.
Price
, “Zero time dilation in an accelerating rocket
,” Am. J. Phys.
65
, 979
–980
(1997
).17.
H.
Nikolic̀
, “The role of acceleration and locality in the twin paradox
,” Found. Phys. Lett.
13
, 595
–601
(2000
).18.
E. A.
Milne
and G. J.
Whitrow
, “On the so-called ‘clock-paradox’ of special relativity
,” Philos. Mag.
40
, 1244
–1249
(1949
).19.
J.
Kronsbein
and E. A.
Farber
, “Time retardation in static and stationary spherical and elliptic spaces
,” Phys. Rev.
115
, 763
–764
(1959
).20.
C. H.
Brans
and D. R.
Stewart
, “Unaccelerated-returning-twin paradox in flat space-time
,” Phys. Rev. D
8
, 1662
–1666
(1973
).21.
T.
Dray
, “The twin paradox revisited
,” Am. J. Phys.
58
, 822
–825
(1990
).22.
R. J.
Low
, “An acceleration-free version of the clock paradox
,” Eur. J. Phys.
11
, 25
–27
(1990
).23.
J. R.
Weeks
, “The twin paradox in a closed universe
,” Am. Math. Monthly
108
, 585
–590
(2001
).24.
J. D.
Barrow
and J.
Levin
, “Twin paradox in compact spaces
,” Phys. Rev. A
63
, 044104
-1
(2001
).25.
J. P.
Luminet
, J. P.
Uzan
, R.
Lehoucq
, and P.
Peter
, “Twin paradox and space topology
,” Eur. J. Phys.
23
, 277
–284
(2002
).26.
O. Wucknitz, “Sagnac effect, twin paradox and space-time topology:- Time and length in rotating systems and closed Minkowski space-times,” gr-qc/0403111.
27.
C. Møller, The Theory of Relativity (Clarendon, Oxford, 1962).
28.
R. H.
Good
, “Uniformly accelerated reference frame and twin paradox
,” Am. J. Phys.
50
, 232
–238
(1982
).29.
E. A.
Desloge
and R. J.
Philpott
, “Uniformly accelerated reference frames in special relativity
,” Am. J. Phys.
55
, 252
–261
(1987
).30.
J.
Crampin
, W. H.
McCrea
, F. R. S.
McNally
, and D.
McNally
, “A class of transformations in special relativity
,” Proc. R. Soc. London, Ser. A
252
, 156
–176
(1959
).31.
P. J. Nahin, Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction (Springer, New York, 1999).
32.
E. F. Taylor and J. A. Wheeler, Spacetime Physics (Freeman, San Francisco, 1966).
33.
E.
Sheldon
, “Relativistic twins or sextuplets?
,” Eur. J. Phys.
24
, 91
–99
(2003
).34.
R.
Montgomery
, “How much does the rigid body rotate? A Berry’s phase from the 18th century
,” Am. J. Phys.
59
, 394
–398
(1991
).35.
M.
Levi
, “Geometric phases in the motion of rigid bodies
,” Arch. Ration. Mech. Anal.
122
, 213
–229
(1993
).36.
M.
Levi
, “Composition of rotations and parallel transport
,” Nonlinearity
9
, 413
–419
(1996
).37.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
38.
M.
Pauri
and M.
Vallisneri
, “Märzke-Wheeler coordinates for accelerated observers in special relativity
,” Found. Phys. Lett.
13
, 401
–425
(2000
).39.
C. E.
Dolby
and S. F.
Gull
, “On radar time and the twin ‘paradox,’
” Am. J. Phys.
69
, 1257
–1261
(2001
).40.
F. W. Sears and R. Brehme, Introduction to the Theory of Relativity (Addison–Wesley, Reading, MA, 1968).
This content is only available via PDF.
© 2005 American Association of Physics Teachers.
2005
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.