Why is the integrated difference of the kinetic and potential energies the quantity to be minimized in Hamilton’s principle? I use simple arguments to convert the problem of finding the path of a particle connecting two points to that of finding the minimum potential energy of a string. The mapping implies that the configuration of a nonstretchable string of variable tension corresponds to the spatial path dictated by the principle of least action; that of a stretchable string in space–time is the one dictated by Hamilton’s principle. This correspondence provides the answer to the question.

1.
E. F.
Taylor
and
J. A.
Wheeler
,
Exploring Black Holes
(
Addison–Wesley
, San Francisco,
2000
), p.
5
.
2.

Strictly speaking, extremal (maxima or minima) are a subset of stationary paths (or states). However, the term principle of least action is more frequently used than the more precise principle of stationary action.

3.
P. L.Moreau
de Maupertuis
, “
Accord de différentes loix de la nature, qui avaient jusqu’ici paru incompatible
,”
Memoires de l’Académie Royale de Sciences
(Paris,
1744
), pp.
417
426
,
reprinted in
Oeuvres
,
4
,
1
23
Reprografischer Nachdruck der Ausg. Lyon (
1768
).
4.
P. L.Moreau
de Maupertuis
, “
Recherche des lois du Mouvement
,”
Oeuvres
4
,
36
38
(
1768
).
5.
The English spelling (Snell) found in most textbooks of the Dutch astronomer and mathematician Willebrord Snel (1580–1626) derives from its Latinized version Willebrodus Snellius. See for example
K.
Hentschel
, “
The law of refraction according to Snellius–Reconstruction of his path of discovery and a translation of his Latin manuscript along with additional documents
,”
Arch. Hist. Exact Sci.
55
,
297
344
(
2001
).
6.
Several years before, Clairaut in “
Sur les explications Cartésienne et Newtonienne de la réfraction de la lumière
,”
Memoires de l’Académie Royale de Sciences
(Paris,
1739
), pp.
259
275
showed that Newtonian attraction could be applied to refraction. The controversy with Samuel Koenig, who accused Maupertuis of plagiarizing Gottfried Wilhelm Leibniz’s work, is detailed in Ref. 7.
7.
P.
Brunet
,
Etude Historique sur le Principe de La Moindre Action
(
Herman et Cie
, Paris,
1938
), pp.
49
60
.
8.
See, for example,
M.
Terrall
,
The Man Who Flattened the Earth: Maupertuis and the Sciences of Enlightenment
(
University of Chicago Press
, Chicago,
2002
), pp.
178
179
.
9.
W. R.
Hamilton
, “
On a general method of expressing the paths of light, and of the planets, by the coefficients of a characteristic function
,”
Dublin University Review and Quarterly Magazine
1
,
795
826
(
1833
).
10.
For a historical account, see
T. L.
Hankins
,
Sir William Rowan Hamilton
(
John Hopkins U.P.
, Baltimore,
1980
).
11.
E.
Schrödinger
,
Collected Papers on Wave Mechanics
(
Blackie and Son
, London,
1928
), pp.
13
27
.
12.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
13.
The phrase is taken from
C. W.
Meisner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
, New York,
1973
), pp.
499
500
.
14.
J.
Bernoulli
, “
Disquisitio Catoptico-Dioptrica
,”
Opera Omnia
(
Geneve, sumptibus Marci-Michaelis Bousquet & sociorum
,
1742
), Vol.
1
, pp.
369
376
.
15.
A. F.
Möbius
,
Lehrbuch der Statik
,
Sweiter Theil
(Liepzig,
1837
), pp.
217
313
.
16.
J.
Gray
, “
Möbius’s geometrical mechanics
,” included in
Möbius and his Band
, edited by
J.
Fauvel
,
R.
Flood
, and
R.
Wilson
(
Oxford U.P.
, Oxford,
1993
), pp.
79
103
.
17.
E.
Mach
,
The Science of Mechanics: Account of its Development
, translated by
Thomas J.
McCormack
(
Open Court
, IL,
1960
), 6th ed., pp.
463
474
.
18.
C.
Bellver-Cebreros
and
M.
Rodriguez-Danta
, “
Eikonal equation from continuum mechanics and analogy between equilibrium of a string and geometrical light rays
,”
Am. J. Phys.
69
,
360
367
(
2001
).
19.
J.
Hanc
,
S.
Tuleja
, and
M.
Hancova
, “
Simple derivation of Newtonian mechanics from the principle of least action
,”
Am. J. Phys.
71
,
386
391
(
2004
).
20.
T. A.
Moore
, “
Getting the most action out of least action: A proposal
,”
Am. J. Phys.
72
,
522
527
(
2004
).
21.
J.
Hanc
and
E. F.
Taylor
, “
From conservation of energy to the principle of least action: A story line
,”
Am. J. Phys.
72
,
514
521
(
2004
).
22.
J.
Hanc
,
E. F.
Taylor
, and
S.
Tuleja
, “
Deriving Lagrange’s equations using elementary calculus
,”
Am. J. Phys.
72
,
510
513
(
2004
).
23.
J.
Hanc
,
E. F.
Taylor
, and
S.
Tuleja
, “
Variational mechanics in one and two dimensions
,”
Am. J. Phys.
(in press).
24.
J.
Evans
and
M.
Rosenquist
, “
F=ma’ optics
,”
Am. J. Phys.
54
,
876
883
(
1986
).
25.
D. S.
Lemons
,
Perfect Form
(
Princeton U.P.
, Princeton,
1997
).
26.

The title of this section was taken from Ref. 10, p. 209.

27.

It could be objected that Hamilton did not know the wave equation for light, but the argument applies to any scalar wave in a nonhomogeneous medium. For example, Eq. (20) could represent a sound wave in a medium with varying density.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.