Although glasses are disordered and complex systems, we show that important characteristics of the glass transition, such as a negative measured specific heat in the transition region, can be understood using a simple model of thermally activated hopping in a two-level system. The dynamics of the heating of a nonequilibrium state is modeled by a master equation. The calculation illustrates the connection between equilibrium and nonequilibrium, in particular, the determination of transition rates using the principle of detailed balance.

1.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992).
2.
R. K. P.
Zia
,
E. L.
Praestgaard
, and
O. G.
Mouritsen
, “
Getting more from pushing less: Negative specific heat and conductivity in nonequilibrium steady states
,”
Am. J. Phys.
70
,
384
392
(
2002
).
3.
C. A. Angell, “Glass transition,” in Encyclopedia of Materials: Science and Technology, edited by K. H. J. Buschow (Elsevier, Amsterdam, 2001), Vol. 4, pp. 3565–3575.
4.
G. W. Scherer, Relaxation in Glass and Composites (Wiley-Interscience, New York, 1986).
5.
S. A. Brawer, Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, OH, 1985).
6.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
, “
Relaxation in glassforming liquids and amorphous solids
,”
J. Appl. Phys.
88
,
3113
3157
(
2000
).
7.
M.
Goldstein
, “
Viscous liquid and the glass transition: A potential energy barrier picture
,”
J. Chem. Phys.
51
,
3728
3739
(
1969
).
8.
F. H.
Stillinger
, “
A topographic view of supercooled liquids and glass formation
,”
Science
267
,
1935
1939
(
1995
).
9.
C. A.
Angell
, “
Formation of glasses from liquids and biopolymers
,”
Science
267
,
1924
1935
(
1995
).
10.
S. B.
Thomas
and
G. S.
Parks
, “
Studies on Glass. VI. Some Specific Heat Data on Boron Trioxide
,”
J. Phys. Chem.
35
,
2091
2102
(
1931
).
11.
D.
Chakrabarti
and
B.
Bagchi
, “
Nonmonotonic temperature dependence of heat capacity through the glass transition within a kinetic model
,”
J. Chem. Phys.
120
,
11678
11685
(
2004
).
12.
E. M. Lifshitz and L. D. Landau, Statistical Physics (Butterworth-Heinemann, London, 1999).
13.
J. C.
Dyre
, “
Energy master equation: A low-temperature approximation to Bässler’s random-walk model
,”
Phys. Rev. B
51
,
12276
12294
(
1995
).
14.
T.
Odagaki
,
T.
Yoshidome
,
T.
Tao
, and
A.
Yoshimori
, “
Specific heat anomaly at the glass transition
,”
J. Chem. Phys.
117
,
10151
10155
(
2002
).
15.
P. N.
Butcher
, “
On the rate equation formulation of the hopping conductivity problem
,”
J. Phys. C
5
,
1817
1829
(
1972
).
16.
G.
Martin
, “
Atomic mobility in Cahn’s diffusion model
,”
Phys. Rev. B
41
,
2279
2283
(
1990
).
17.
L. P.
Kadanoff
and
J.
Swift
, “
Transport coefficients near the critical point: A master-equation approach
,”
Phys. Rev.
165
,
310
322
(
1968
).
18.
I.
Matheson
,
D. F.
Walls
, and
C. W.
Gardiner
, “
Stochastic models of first-order nonequilibrium phase transitions in chemical reaction
,”
J. Stat. Phys.
12
,
21
31
(
1975
).
19.
M. A.
DeBolt
,
A. J.
Easteal
,
P. B.
Macedo
, and
C. T.
Moynihan
, “
Analysis of structural relaxation in glass using rate heating data
,”
J. Am. Ceram. Soc.
59
,
16
21
(
1976
).
20.
J. J.
Brey
and
A.
Prados
, “
Residual properties of a two-level system
,”
Phys. Rev. B
43
,
8350
8361
(
1991
).
21.
C. A.
Angell
and
K.
Rao
, “
Configurational excitations in condensed matter, and the bond lattice model for the liquid-glass transition
,”
J. Chem. Phys.
57
,
470
481
(
1972
).
22.
V.
Halpern
and
J.
Bisquert
, “
The effect of the cooling rate of the fictive temperature in some model systems
,”
J. Chem. Phys.
114
,
9512
9517
(
2001
).
23.
E. S.
Cobos
,
V. V.
Filimonov
,
A.
Gálvez
,
M.
Maqueda
,
E.
Valdı́via
,
J. C.
Martı́nez
, and
P. L.
Mateo
, “
AS-48: a circular protein with an extremely blobular structure
,”
FEBS Lett.
505
,
379
382
(
2001
).
24.
R. E.
Georgescu
,
M. M.
Garcı́a-Mira
,
M. L.
Tasayco
, and
J. M.
Sánchez Ruiz
, “
Heat capacity analysis of oxidized Escherichia coli thioredoxin fragments (1±73, 74±108) and their noncovalent complex
,”
Eur. J. Biochem.
268
,
1477
1485
(
2001
).
25.
R. C.
Zeller
and
R. O.
Pohl
, “
Thermal conductivity and specific heat of noncrystalline solids
,”
Phys. Rev. B
4
,
2029
2041
(
1971
).
26.
P. W.
Anderson
,
B. I.
Halperin
, and
C. M.
Varma
, “
Anomalous low-temperature thermal properties of glasses and spin glasses
,”
Philos. Mag.
25
,
1
15
(
1972
).
27.
J.
Schnakenberg
, “
Network theory of microscopic and macroscopic behavior of master equation systems
,”
Rev. Mod. Phys.
48
,
571
585
(
1976
).
28.
K. A.
Fichthorn
and
W. H.
Weinberg
, “
Theoretical foundations of Monte Carlo simulations
,”
J. Chem. Phys.
95
,
1090
1096
(
1991
).
29.
S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941).
30.
H. Fröhlich, Theory of Dielectrics, 2nd ed. (Oxford U. P., Oxford, 1958).
31.
A.
Miller
and
S.
Abrahams
, “
Impurity conduction at low concentrations
,”
Phys. Rev.
120
,
745
755
(
1960
).
32.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
33.
W.
Shockley
and
W. T.
Read
, “
Statistics of the recombinations of holes and electrons
,”
Phys. Rev.
87
,
835
842
(
1952
).
34.
I. G.
Austin
and
N. F.
Mott
, “
Polarons in crystalline and non-crystalline materials
,”
Adv. Phys.
18
,
41
102
(
1969
).
35.
R. M. L.
Evans
, “
Rules for transition rates in nonequilibrium steady states
,”
Phys. Rev. Lett.
92
,
150601
(
2004
).
36.
D. A.
Huse
and
D. S.
Fisher
, “
Residual energies after slow cooling of disordered systems
,”
Phys. Rev. Lett.
57
,
2203
2206
(
1986
).
37.
H. N.
Ritland
, “
Limitations of the fictive temperature concept
,”
J. Am. Ceram. Soc.
39
,
403
408
(
1956
).
38.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
,
P. K.
Gupta
,
M. A.
DeBolt
,
J. F.
Dill
,
B. E.
Dom
,
P. W.
Drake
,
A. J.
Easteal
,
P. B.
Elterman
,
R. P.
Moeller
,
H.
Sasabe
, and
J. A.
Wilder
, “
Structural relaxation in vitreous materials
,”
Ann. N.Y. Acad. Sci.
279
,
15
35
(
1976
).
39.
O. S.
Narayanaswamy
, “
A model of structural relaxation in glass
,”
J. Am. Ceram. Soc.
54
,
491
498
(
1971
).
40.
I. M.
Hodge
and
J. M.
O’Reilly
, “
Nonlinear kinetic and thermodynamic properties of monomeric organic glasses
,”
J. Phys. Chem. B
103
,
4171
4175
(
1999
).
41.
S. M.
Rekhson
, “
Memory effects in glass transition
,”
J. Non-Cryst. Solids
84
,
68
85
(
1986
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.