Real-space observation of single atoms and electron surface states lies at the heart of scanning tunneling microscopy. The resolution of atomic structures depends on quantum mechanical features such as three-dimensional tunneling, the Pauli principle, the possibility of electron resonances, and the importance of multiple scattering events, which allow the current carrying electrons to detect single atoms and explore electronic properties of surfaces. We present a simple calculation that leads directly to experimentally observable quantities. The starting point of the calculation is the treatment of the scanning tunneling microscope (STM) as an open quantum system, with the tip being a point-like source (or sink) of electrons. Our STM image simulations of corral-like adsorbate structures bear strong resemblance to the experimental results by Crommie et al [Science262, 218220 (1993); Physica D83, 98108 (1995)].

1.
G.
Binnig
and
H.
Rohrer
, “
Scanning tunneling microscopy
,”
Helv. Phys. Acta
38
,
726
735
(
1982
).
2.
J.
Tersoff
and
D. R.
Hamann
, “
Theory and application for the scanning tunneling microscope
,”
Phys. Rev. Lett.
50
,
1998
2001
(
1983
).
3.
J.
Tersoff
and
D. R.
Hamann
, “
Theory of the scanning tunneling microscope
,”
Phys. Rev. B
31
,
805
813
(
1985
).
4.
M. F.
Crommie
,
C. P.
Lutz
, and
D. M.
Eigler
, “
Confinement of electrons to quantum corrals on a metal surface
,”
Science
262
,
218
220
(
1993
).
5.
M. F.
Crommie
,
C. P.
Lutz
,
D. M.
Eigler
, and
E. J.
Heller
, “
Quantum corrals
,”
Physica D
83
,
98
108
(
1995
).
6.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
, New York,
1996
), 7th ed.
7.
J.
Bernstein
,
P. M.
Fishbane
, and
S.
Gasiorowicz
,
Modern Physics
(
Prentice–Hall
, Upper Saddle River, NJ,
2000
).
8.
R.
Resnick
,
D.
Halliday
, and
K. S.
Krane
,
Physics
(
Wiley
, New York,
2002
), 5th ed.
9.
P. A.
Tipler
and
G.
Mosca
,
Physics for Scientists and Engineers
(
Freeman
, New York,
2003
), 5th ed.
10.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison–Wesley
, Reading, MA,
1964
), Vol.
III
, Chap. 1.4.
11.
A.
Messiah
,
Quantum Mechanics
(
North-Holland
, Amsterdam,
1962
), Vol.
II
.
12.
H.-W.
Fink
, “
Point sources for ions and electrons
,”
Phys. Scr.
38
,
260
263
(
1988
).
13.
L. S.
Rodberg
and
R. M.
Thaler
,
Introduction to the Quantum Theory of Scattering
(
Academic
, New York,
1967
), p.
128
.
14.
J.
Schwinger
,
Particles, Sources and Fields
(
Addison–Wesley
, Reading, MA,
1973
), Vol.
II
.
15.
M. V.
Berry
, “
A curious multifoliate caustic in the magnetic Green function
,”
Eur. J. Phys.
2
,
22
28
(
1981
).
16.
M.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Springer
, New York,
1990
).
17.
A. D.
Peters
,
C.
Jaffé
, and
J. B.
Delos
, “
Closed-orbit theory and the photodetachment cross section of H in parallel electric and magnetic fields
,”
Phys. Rev. A
56
,
331
344
(
1997
).
18.
D. F.
Holocomb
, “
Quantum electrical transport in samples of limited dimensions
,”
Am. J. Phys.
67
,
278
297
(
1999
).
19.
L. I.
Glazman
, “
Resource letter: Mesp-1: Mesoscopic physics
,”
Am. J. Phys.
70
,
376
383
(
2002
).
20.
E. N.
Economou
,
Green’s Functions in Quantum Physics
(
Springer
, Berlin,
1983
).
21.
E. J.
Heller
, “
Quantum corrections to classical photodissociation models
,”
Chem. Phys.
68
,
2066
2075
(
1978
).
22.
C. J.
Chen
, “
Origin of atomic resolution on metal surfaces in scanning tunneling microscopy
,”
Phys. Rev. Lett.
65
,
448
451
(
1990
).
23.
C. J.
Chen
, “
Tunneling matrix elements in three-dimensional space: The derivative rule and sum rule
,”
Phys. Rev. B
42
,
8841
8857
(
1990
).
24.
C.
Bracher
,
T.
Kramer
, and
M.
Kleber
, “
Ballistic matter waves with angular momentum: Exact solutions and applications
,”
Phys. Rev. A
67
,
043601
1
(
2003
).
25.
A.
Groß
,
Theoretical Surface Science: A Microscopic Perspective
(
Springer
, Berlin,
2003
).
26.
M.
Lannoo
and
P.
Friedel
,
Atomic and Electronic Structure of Surfaces
(
Springer
, Berlin,
1991
).
27.
M.
Kleber
, “
Exact solutions for time-dependent phenomena in quantum mechanics
,”
Phys. Rep.
236
,
331
393
(
1994
).
28.
D. A.
Atkinson
and
H. W.
Crater
, “
An exact treatment of the Dirac delta function potential in the Schrödinger equation
,”
Am. J. Phys.
43
,
301
304
(
1975
).
29.
J. N.
Churchill
and
F. O.
Arntz
, “
The infinite tilted well: An example of elementary quantum mechanics with applications toward current research
,”
Am. J. Phys.
37
,
693
697
(
1969
).
30.
C.
Grosche
and
F.
Steiner
,
Handbook of Feynman Path Integrals
(
Springer
, Berlin,
1998
), p.
338
.
31.
C.
Bracher
,
W.
Becker
,
S. A.
Gurvitz
,
M.
Kleber
, and
M. S.
Marinov
, “
Three-dimensional tunneling in quantum ballistic motion
,”
Am. J. Phys.
66
,
38
48
(
1998
).
32.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
, New York,
1972
).
33.
V.
Magni
,
G.
Cerullo
, and
S.
De Silvestri
, “
High-accuracy fast Hankel transform for optical beam propagation
,”
J. Opt. Soc. Am. A
9
,
2031
2033
(
1992
).
34.
F. I.
Dalidchik
and
V. Z.
Slonim
, “
Strong exchange interaction effects in a homogeneous electric field
,”
Sov. Phys. JETP
43
,
25
31
(
1976
).
35.
R. G.
Newton
,
Scattering Theory of Waves and Particles
(
Dover
, New York,
2002
), 2nd ed.
36.
J.
Taylor
,
Hong
Guo
, and
J.
Wang
, “
Ab initio modeling of quantum transport properties of molecular electronic devices
,”
Phys. Rev. B
63
,
245407
1
(
2001
).
37.
J.
Nieminen
,
S.
Lahti
, and
S.
Paavilainen
, “
Contrast changes in STM images and relations between different tunneling models
,”
Phys. Rev. B
66
,
165421
1
(
2002
).
38.
Yu. N.
Demkov
and
V. N.
Ostrovskii
,
Zero-Range Potentials and Their Application in Atomic Physics
(
Plenum
, New York,
1988
).
39.
K.
Wódkiewicz
, “
Fermi pseudopotential in arbitrary dimensions
,”
Phys. Rev. A
43
,
68
76
(
1991
).
40.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison–Wesley
, Reading, MA,
1985
).
41.
J.
Gea-Banacloche
, “
A quantum bouncing problem
,”
Am. J. Phys.
67
,
776
782
(
1999
).
42.
O.
Vallée
, “
Comment on a quantum bouncing problem
,”
Am. J. Phys.
68
,
672
673
(
2000
).
43.
D. M.
Goodmanson
, “
A recursion relation for matrix elements of the quantum bouncer
,”
Am. J. Phys.
68
,
866
868
(
2000
).
44.
D. A.
Goodings
and
T.
Szeredi
, “
The quantum bouncer by the path integral method
,”
Am. J. Phys.
59
,
924
930
(
1991
).
45.
W.
Sacks
, “
Tip-orbitals and atomic corrugation of metal surfaces in scanning tunneling microscopy
,”
Phys. Rev. B
61
,
7656
7668
(
2000
).
46.
Y. S.
Chan
and
E. J.
Heller
, “
Scanning tunneling microscopy surface state electron scattering: Two-tip results from one-tip data
,”
Phys. Rev. Lett.
78
,
2570
2572
(
1997
).
47.
G. A.
Fiete
and
E. J.
Heller
, “
Theory of quantum corrals and quantum mirages
,”
Rev. Mod. Phys.
75
,
933
948
(
2003
).
48.

A MATHEMATICA or a MAPLE version of the C++ code for calculating constant-height plots for quantum corrals can be obtained from M.K.

49.
C.
Bracher
,
M.
Riza
, and
M.
Kleber
, “
Propagator theory of scanning tunneling microscopy
,”
Phys. Rev. B
56
,
7704
7715
(
1997
).
50.
A.
Correa
,
K.
Hallberg
, and
C. A.
Balseiro
, “
Mirages and enhanced magnetic interactions in quantum corrals
,”
Europhys. Lett.
58
,
899
905
(
2002
).
51.
T.
Kramer
,
C.
Bracher
, and
M.
Kleber
, “
Matter waves from quantum sources in a force field
,”
J. Phys. A
35
,
8361
8372
(
2002
).
52.
T.
Kramer
,
C.
Bracher
, and
M.
Kleber
, “
Four-path interference and uncertainty principle in photodetachment microscopy
,”
Europhys. Lett.
56
,
471
477
(
2001
).
53.
W.
Becker
,
A.
Lohr
, and
M.
Kleber
, “
Effects of rescattering on above–threshold ionization
,”
J. Phys. B
27
,
L325
L332
(
1994
).
54.
H. J.
Kreuzer
and
L. C.
Wang
, “
Self-consistent calculation of atomic absorption on metals in high electric fields
,”
Phys. Rev. B
45
,
12050
12055
(
1992
).
55.
T.
Kramer
,
C.
Bracher
, and
M.
Kleber
, “
Electron propagation in crossed magnetic and electric fields
,”
J. Opt. B: Quantum Semiclassical Opt.
6
,
21
27
(
2004
).
56.
R.
Landauer
, “
Electrical transport in open and closed systems
,”
IBM J. Res. Dev.
1
,
223
231
(
1957
).
57.
R.
Landauer
, “
Electrical resistance of disordered one-dimensional lattices
,”
Philos. Mag.
21
,
863
867
(
1970
).
58.
M.
Büttiker
, “
Four-terminal phase-coherent conductance
,”
Phys. Rev. Lett.
57
,
1761
1764
(
1986
).
59.
A. D.
Stone
and
A.
Szafer
, “
What is measured when you measure a resistance?—The Landauer formula revisited
,”
IBM J. Res. Dev.
32
,
384
413
(
1988
).
60.
E.
Merzbacher
,
Quantum Mechanics
(
Wiley
, New York,
1998
), 3rd ed.
61.
L.
Hörmander
,
Linear Partial Differential Operators
(
Springer
, Berlin,
1963
).
62.
C.
Bracher
, “
Quantum ballistic motion and its applications
,” Ph.D. thesis,
Technische Universität München
,
1999
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.