Evolutionary game theory is designed to capture the essentials of the characteristic interactions among individuals. Its most prominent application is the quest for the origins and evolution of cooperation. The effects of population structures on the performance of behavioral strategies became apparent only in recent years and marks the advent of an intriguing link between apparently unrelated disciplines. Evolutionary game theory in structured populations reveals critical phase transitions that fall into the universality class of directed percolation on square lattices and mean-field-type transitions on regular small world networks and random regular graphs. We employ the prisoner’s dilemma to discuss new insights gained in behavioral ecology using methods from physics.

1.
P. E.
Turner
and
L.
Chao
, “
Escape from prisoner’s dilemma in RNA phage Φ6
,”
Am. Nat.
161
,
497
505
(
2003
).
2.
A. M. Colman, Game Theory and its Applications in the Social and Biological Sciences (Butterworth-Heinemann, Oxford, 1995).
3.
J. Maynard Smith and E. Szathmáry, The Major Transitions in Evolution (Freeman, Oxford, 1995).
4.
J. von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour (Princeton U. P., Princeton, 1944).
5.
J. Maynard
Smith
and
G.
Price
, “
The logic of animal conflict
,”
Nature (London)
246
,
15
18
(
1973
).
6.
R. L.
Trivers
, “
The evolution of reciprocal altruism
,”
Q. Rev. Biol.
46
,
35
57
(
1971
).
7.
R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984).
8.
R. D. Alexander, The Biology of Moral Systems (Aldine de Gruyter, New York, 1987).
9.
M. A.
Nowak
and
K.
Sigmund
, “
Evolution of indirect reciprocity by image scoring
,”
Nature (London)
393
,
573
577
(
1998
).
10.
C.
Wedekind
and
M.
Milinski
, “
Cooperation through image scoring in humans
,”
Science
288
,
850
852
(
2000
).
11.
C.
Hauert
,
S. De
Monte
,
J.
Hofbauer
, and
K.
Sigmund
, “
Volunteering as red queen mechanism for cooperation in public goods games
,”
Science
296
,
1129
1132
(
2002
).
12.
G.
Szabó
and
C.
Hauert
, “
Phase transitions and volunteering in spatial public goods games
,”
Phys. Rev. Lett.
89
,
118101
-
1
(
2002
).
13.
D.
Semmann
,
H. J.
Krambeck
, and
M.
Milinski
, “
Volunteering leads to rock-paper-scissors dynamics in a public goods game
,”
Nature (London)
425
,
390
393
(
2003
).
14.
M. A.
Nowak
and
R. M.
May
, “
Evolutionary games and spatial chaos
,”
Nature (London)
359
,
826
829
(
1992
).
15.
A. V. M.
Herz
, “
Collective phenomena in spatially extended evolutionary games
,”
J. Theor. Biol.
169
,
65
87
(
1994
).
16.
K.
Lindgren
and
M. G.
Nordahl
, “
Evolutionary dynamics of spatial games
,”
Physica D
75
,
292
309
(
1994
).
17.
M.
Nakamaru
,
H.
Matsuda
, and
Y.
Iwasa
, “
The evolution of cooperation in a lattice-structured population
,”
J. Theor. Biol.
184
,
65
81
(
1997
).
18.
G.
Szabó
and
C.
Tőke
, “
Evolutionary prisoner’s dilemma game on a square lattice
,”
Phys. Rev. E
58
,
69
73
(
1998
).
19.
K.
Brauchli
,
T.
Killingback
, and
M.
Doebeli
, “
Evolution of cooperation in spatially structured populations
,”
J. Theor. Biol.
200
,
405
417
(
1999
).
20.
E.
Ising
, “
Beitrag zur Theorie des Ferromagnetismus
,”
Z. Phys.
31
,
253
258
(
1925
).
21.
J.
Nash
, “
The bargaining problem
,”
Econometrica
18
,
155
162
(
1950
).
22.
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge U. P., Cambridge, 1998).
23.
R. J.
Glauber
, “
Time-dependent statistics of the Ising model
,”
J. Math. Phys.
4
,
294
307
(
1963
).
24.
J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge U. P., Cambridge, 1999).
25.
H.
Hinrichsen
, “
Non-equilibrium critical phenomena and phase transitions into absorbing states
,”
Adv. Phys.
49
,
815
958
(
2000
).
26.
W. D.
Hamilton
, “
The evolution of altruistic behaviour
,”
Am. Nat.
97
,
354
356
(
1963
).
27.
R. Dawkins, The Selfish Gene: New Edition (Oxford U. P., Oxford, 1989).
28.
J. B. S. Haldane, The Causes of Evolution (Longman, New York, 1932).
29.
S. R.
Broadbent
and
J. M.
Hammersley
, “
Percolation processes, I. Crystals and mazes
,”
Proc. Cambridge Philos. Soc.
53
,
629
645
(
1957
).
30.
T. E.
Harris
, “
Contact interactions on a lattice
,”
Ann. Prob.
2
,
969
988
(
1974
).
31.
D. H.
Zanette
, “
Dynamics of rumor propagation on small-world networks
,”
Phys. Rev. E
65
,
041908
-
1
(
2002
).
32.
J. L.
Cardy
and
U. C.
Täuber
, “
Field theory of branching and annihilating random walks
,”
J. Stat. Phys.
90
,
1
56
(
1998
).
33.
A.
Lipowski
and
M.
Droz
, “
Phase transitions in nonequilibrium d-dimensional models with q absorbing states
,”
Phys. Rev. E
65
,
056114
-
1
(
2002
).
34.
S.
Milgram
, “
The small world problem
,”
Psychol. Today
2
,
60
67
(
1967
).
35.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
36.
R.
Albert
and
A. L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
37.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small world’ networks
,”
Nature (London)
393
,
440
442
(
1998
).
38.
B. Bollobás, Random Graphs (Academic, New York, 1995).
39.
G.
Szabó
, “
Branching annihilating random walk on random regular graphs
,”
Phys. Rev. E
62
,
7474
7477
(
2000
).
40.
M. A.
Nowak
,
S.
Bonhoeffer
, and
R. M.
May
, “
More spatial games
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
4
(
1
),
33
56
(
1994
).
41.
M. H.
Vainstein
and
J. J.
Arenzon
, “
Disordered environments in spatial games
,”
Phys. Rev. E
64
,
051905
-
1
(
2001
).
42.
G.
Abramson
and
M.
Kuperman
, “
Social games in a social network
,”
Phys. Rev. E
63
,
030901
-
1
(
2001
).
43.
B. J.
Kim
,
A.
Trusina
,
P.
Holme
,
P.
Minnhagen
,
J. S.
Chung
, and
M. T.
Choi
, “
Dynamic instabilities induced by asymmetric influence: Prisoner’s dilemma game in small-world networks
,”
Phys. Rev. E
66
,
021907
-
1
(
2002
).
44.
H.
Ebel
and
S.
Bornholdt
, “
Coevolutionary games on networks
,”
Phys. Rev. E
66
,
056118
-
1
(
2002
).
45.
J.-J. Rousseau, The Inequality of Man (1755); reprinted in Rousseau’s Social Contract and Discourses, edited by G. Cole (Dent, London, 1913), pp. 157–246.
46.
C.
Hauert
,
S.
De Monte
,
J.
Hofbauer
, and
K.
Sigmund
, “
Replicator dynamics in optional public goods games
,”
J. Theor. Biol.
218
,
187
194
(
2002
).
47.
G.
Szabó
and
C.
Hauert
, “
Evolutionary prisoner’s dilemma games with voluntary participation
,”
Phys. Rev. E
66
,
062903
-
1
(
2002
).
48.
C. Hauert, “Virtuallabs: Interactive tutorials on evolutionary game theory,” 〈http://www.univie.ac.at/virtuallabs〉.
49.
K.
Tainaka
, “
Paradoxical effect in a three-candidate voter model
,”
Phys. Lett. A
176
,
303
306
(
1993
).
50.
M.
Frean
and
E. R.
Abraham
, “
Rock-scissors-paper and the survival of the weakest
,”
Proc. R. Soc. London, Ser. B
268
,
1323
1327
(
2001
).
51.
B.
Kerr
,
M. A.
Riley
,
M. W.
Feldman
, and
B. J. M.
Bohannan
, “
Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors
,”
Nature (London)
418
,
171
171
(
2002
).
52.
G.
Szabó
and
J.
Vukov
, “
Cooperation for volunteering and partially random partnerships
,”
Phys. Rev. E
69
,
036107
-
1
(
2004
).
53.
P. Ball, Critical Mass: How One Thing leads to Another (Heinemann, London, 2004).
54.
G.
Szabó
,
T.
Antal
,
P.
Szabó
, and
M.
Droz
, “
Spatial evolutionary prisoner’s dilemma game with three strategies and external constraints
,”
Phys. Rev. E
62
,
1095
1103
(
2000
).
55.
L.
Frachebourg
,
P. L.
Krapivsky
, and
E.
Ben-Naim
, “
Segregation in a one-dimensional model of interacting species
,”
Phys. Rev. Lett.
77
,
2125
2128
(
1996
).
56.
G.
Szabó
,
A.
Szolnoki
, and
R.
Izsák
, “
Rock-scissors-paper game on regular small-world networks
,”
J. Phys. A
37
,
2599
2609
(
2004
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.